8. In echelon form, which of the following is incorrect?
9. Every row of A which has all its entries 0 occurs below every row which has a non-zero entry.
10. The first non-zero entry in each non-zero row is 1 .
11. The number of zeros before the first non-zero element in a row is less than the number of such zeros in the next row.
12. Two rows can have same number of zeros before the first non-zero entry
13. If $\Delta \neq 0$ then the system is
14. consistent and has unique solution
15. consistent and has infinitely many solutions
16. inconsistent
17. either consistent or inconsistent
18. In the system of 3 linear equations with three unknowns, if $\Delta=0$ and one of Δ_{x}, Δ_{y}, or Δ_{z} is nonzero then the system is

19. consistent and the system reduces to two equations
20. consistent and the system reduces to a single equation.
21. In the system of 3 linear equations with three unknowns, if $\Delta=0, \Delta_{x}=0, \Delta_{y}=0, \Delta_{z}=0$ and atleast one 2×2 minor of $\Delta \neq 0$ then the system is
22. consistent
23. inconsistent
24. consistent and the system reduces to two equations
25. consistent and the system reduces to a single equation.
26. In the system of 3 linear equations with three unknowns, if $\Delta=0$ and all 2×2 minors of $\Delta=0$
and atleast one of 2×2 minor of Δ_{x} or Δ_{y} or Δ_{z} is non-zero then the system is
27. consistent
28. inconsistent
29. consistent and the system reduces to two equations
30. consistent and the system reduces to a single equation.
31. In the system of 3 linear equations with three unknowns, if $\Delta=0$ and all 2×2 minors of $\Delta, \Delta_{x}, \Delta_{y}, \Delta_{z}$ are zeros and atleast one non-zero element is in Δ then the system is
32. consistent
33. inconsistent
34. consistent and the system reduces to two equations
35. consistent and the system reduces to a single equation.
36. Every homogeneous system(linear)
37. is always consistent
38. has only trivial solution
39. has infinitely many solution
40. need not be consistent
41. If $\rho(A)=\rho[A, B]$ then the system is
42. consistent and has infinitely many solution
43. consistent and has a míque solution

44. inconsistent
45. If $\rho(A)=\rho[A, B]=$ the number of unknowns then the system is
46. consistent and has infinitely many solution
47. consistent and has a unique solution
48. consistent
49. inconsistent
50. $\rho(A) \neq \rho[A, B]$ then the system is
51. consistent and has infinitely many solution
52. consistent and has a unique solution
53. consistent
54. inconsistent
55. In the system of 3 linear equations with three unknowns, $\rho(A)=\rho[A, B]=1$,
then the system
1.has unique solution
56. reduces to 2 equations and has infinitely many solutions
57. reduces to a single equations and has infinitely many solutions
58. is inconsistent
59. In the homogeneous system with three unknowns, $\rho(A)=$ number of unknowns then the system has
60. only trivial solution
61. reduces to 2 equations and has infinitely many solutions
62. reduces to a single equations and has infinitely many solutions
63. is inconsistent
64. In the system of three linear equations with three unknowns, in the non-homogeneous system $\rho(A)=\rho[A, B]=2$, then the system
65. has unique solution
66. reduces to two equations and has infinitely many solutions
67. reduces to a single equations and has infinitely many solutions
68. is inconsistent
69. In the homogeneous system $\rho(A)$ < the number of unknowns then the system has

70. trivial solution and infinitely many non-trivial solutions
71. only non-trivial solutions
72. no solution
73. Cramer's rule is applicable only (with three unknowns) when
74. $\Delta \neq 0$
75. $\Delta=0$
76. $\Delta=0, \Delta_{x} \neq 0$
77. $\Delta_{x}=\Delta_{y}=\Delta_{z}=0$
78. Which of the following statement is correct regarding homogeneous system
79. always consistent
80. has only trivial solution
81. hás only non-trivial solutions
82. has only trivial solution only if rank of the coefficient matrix is equal to the number of unknowns

2. VECTOR ALGEBRA

(TWO QUESTION FOR FULL TEST)

TOTAL NUMBER OF QUESTIONS: 39

1. The value of $\vec{a} \cdot \vec{b}$ when $\vec{a}=\vec{i}-2 \vec{j}+\vec{k}$ and $\vec{b}=4 \vec{i}-4 \vec{j}+7 \vec{k}$ is
2. 19
3. 3
4. -19
5. 14
6. The value of $\vec{a} \cdot \vec{b}$ when $\vec{a}=\vec{j}+2 \vec{k}$ and $\vec{b}=2 \vec{i}+\vec{k}$ is
7. 2
8. -2
9. 3
10. 4
11. The value of $\vec{a} \cdot \vec{b}$ when $\vec{a}=\vec{j}-2 \vec{k}$ and $\vec{b}=2 \vec{i}+3 \vec{j}-2 \vec{k}$ is
12. 7
13. -7
14. 5
4.6
15. If $m \vec{i}+2 \vec{j}+\vec{k}$ and $4 \vec{i}-9 \vec{j}+2 \vec{k}$ are perpendicular, then m is
1.-4
16. 8
17. 4
18. 12
19. If $5 \vec{i}-9 \vec{j}+2 \vec{k}$ and $m \vec{i}+2 \vec{j}+\vec{k}$ are perpendicular, then m is

20. If \vec{a} and \vec{b} are two vectors such that $|\vec{a}|=4,|\vec{b}|=3$ and $\vec{a} \cdot \vec{b}=6$, then the angle between \vec{a} and \vec{b} is
21. $\frac{\pi}{6}$
$2 \cdot-\frac{\pi}{6}$
22. $-\frac{\pi}{3}$
23. $\frac{\pi}{3}$
24. The angle between the vectors $3 \vec{i}-2 \vec{j}-6 \vec{k}$ and $4 \vec{i}-\vec{j}+8 \vec{k}$ is
25. $\cos ^{-1}\left(\frac{34}{63}\right)$
26. $\sin ^{-1}\left(-\frac{34}{63}\right)$
27. $\sin ^{-1}\left(\frac{34}{63}\right)$
28. $\cos ^{-1}\left(-\frac{34}{63}\right)$
29. The angle between the vectors $\vec{i}-\vec{j}$ and $\vec{j}-\vec{k}$ is
30. $\frac{\pi}{3}$
31. $-\frac{2 \pi}{3}$
32. $-\frac{\pi}{3}$
33. $\frac{2 \pi}{3}$
34. The projection of the vector $7 \vec{i}+\vec{j}-4 \vec{k}$ on $2 \vec{i}+6 \vec{j}+3 \vec{k}$ is
35. $\frac{7}{8}$
36. $\frac{8}{\sqrt{66}}$
37. $\frac{8}{7}$
38. $\frac{\sqrt{66}}{8}$
39. $\vec{a} \cdot \vec{b}$ when $\vec{a}=2 \vec{i}+2 \vec{j}-\vec{k}$ and $\vec{b}=6 \vec{i}-3 \vec{j}+2 \vec{k}$ is
40. 4
41. -4
3.3
42. 5
43. If the vectors $2 \vec{i}+\lambda \vec{j}+\vec{k}$ and $\vec{i}-2 \vec{j}+\vec{k}$ are perpendicular to each other, then λ is
44. $\frac{2}{3}$
45. $\frac{-2}{3}$
46. $\frac{3}{2}$
47. $\frac{-3}{2}$
48. If the vectors $\vec{a}=3 \vec{i}+2 \vec{j}+9 \vec{k}$ and $\vec{b}=\vec{i}+m \vec{j}+3 \vec{k}$ are perpendicular, then ' m ' is
49. -15
50. 15
3.30
51. -30
52. If the vectors $\vec{a}=3 \vec{i}+2 \vec{j}+9 \vec{k}$ and $\vec{b}=\vec{i}+m \vec{j}+3 \vec{k}$ are parallel, then ' m ' is
53. $\frac{3}{2}$
54. $\frac{2}{3}$
55. $\frac{-3}{2}$
56. $\frac{-2}{3}$
57. If $\vec{a}, \vec{b}, \vec{c}$ are mutually perpendicular unit vectors, then $|\vec{a}+\vec{b}+\vec{c}|=$
58. 3
59. 9
60. $3 \sqrt{3}$
61. $\sqrt{3}$

62. Let \vec{u}, \vec{v} and \vec{w} be vector such that $\vec{u}+\vec{v}+\vec{w}=\overrightarrow{0}$. If $|\vec{u}|=3,|\vec{v}|=4$ and $|\vec{w}|=5$, then $\vec{u} \cdot \vec{v}+\vec{v} \cdot \vec{w}+\vec{w} \cdot \vec{u}$ is
63. 25
64. -25
3.5
65. $\sqrt{5}$
66. The projection of $\vec{i}-\vec{j}$ on z-axis is
67. 0
68. 1
69. -1
70. 2
71. The projection of $\vec{i}+2 \vec{j}-2 \vec{k}$ on $2 \vec{i}-\vec{j}+5 \vec{k}$ is
72. $\frac{-10}{\sqrt{30}}$
73. $\frac{10}{\sqrt{30}}$
74. $\frac{1}{3}$
75. $\frac{\sqrt{10}}{30}$
76. The projection of $3 \vec{i}+\vec{j}-\vec{k}$ on $4 \vec{i}-\vec{j}+2 \vec{k}$ is
77. $\frac{9}{\sqrt{21}}$
78. $-\frac{9}{\sqrt{21}}$
79. $\frac{81}{\sqrt{21}}$
80. $-\frac{81}{\sqrt{21}}$
81. The work done in a moving particle from the point A with position vector $2 \vec{i}-6 \vec{j}+7 \vec{k}$ to the point B , with position vector $3 \vec{i}-\vec{j}-5 \vec{k}$ by a force $\vec{F}=\vec{i}+3 \vec{j}-\vec{k}$ is
82. 25
83. 26
84. 27
85. 28
86. The work done by the force $\vec{F}=a \vec{i}+\vec{j}+\vec{k}$ in moving the point of application from $(1,1,1)$ to $(2,2,2)$ along a straight line is given to be 5 units. The value of a is
87. -3
88. 3
89. 8
90. -8
91. If $|\vec{a}|=3,|\vec{b}|=4$ and $\vec{a} \cdot \vec{b}=9$, then $|\vec{a} \times \vec{b}|$ is
$1.3 \sqrt{7}$
2.63
3.69
92. $\sqrt{69}$
93. The angle between the two vectors \vec{a} and \vec{b} if $|\vec{a} \times \vec{b}|=\vec{a} \cdot \vec{b}$ is
94. $\frac{\pi}{4}$
95. $\frac{\pi}{3}$
96. $\frac{\pi}{6}$
97. $\frac{\pi}{2}$
98. If $|\vec{a}|=2,|\vec{b}|=7$ and $\vec{a} \times \vec{b}=3 \vec{i}-2 \vec{j}+6 \vec{k}$ then the angle between \vec{a} and \vec{b} is
99. $\frac{\pi}{4}$
100. $\frac{\pi}{3}$
101. $\frac{\pi}{6}$
102. $\frac{\pi}{2}$
103. The direction cosines of a vector whose direction ratios are 2, 3, -6 are
104. $\left(\frac{2}{7}, \frac{3}{7}, \frac{-6}{7}\right)$
105. The unit normal vectors to the plane $2 x-y+2 z=5$ are
106. $2 \vec{i}-\vec{j}+2 \vec{k}$
107. $\frac{1}{3}(2 \vec{i}-\vec{j}+2 \vec{k})$
108. $-\frac{1}{3}(2 \vec{i}-\vec{j}+2 \hat{k})$
109. $\pm \frac{1}{3}(2 \vec{i}-\vec{j}+2 \vec{k})$
110. The length of the perpendicular from the origin to the plane $\vec{r} \cdot(3 \vec{i}+4 \vec{j}+12 \vec{k})=26$ is
111. 26
112. $\frac{26}{169}$
3.2
113. $\frac{1}{2}$
114. The distance from the origin to the plane $\vec{r} \cdot(2 \vec{i}-\vec{j}+5 \vec{k})=7$ is
115. $\frac{7}{\sqrt{30}}$
116. $\frac{\sqrt{30}}{7}$
117. $\frac{30}{7}$
118. $\frac{7}{30}$
119. Chord AB is a diameter of the sphere $|\vec{r}-(2 \vec{i}+\vec{j}-6 \vec{k})|=\sqrt{18}$ with coordinate of A as (3, 2, -2). Then the coordinates of B is
120. $(1,0,10)$
121. $(-1,0,-10)$
122. $(-1,0,10)$
123. $(1,0,-10)$
124. The centre and radius of the sphere $|\vec{r}-(2 \vec{i}-\vec{j}+4 \vec{k})|=5$ are
125. $(2,-1,4)$ and 5
126. $(2,1$,
4) and 5
3. $(-2,1,4)$ and 6
4. $(2,1,-4)$ and 5
5. The centre and radius of the sphere $|2 \vec{r}+(3 \vec{i}-\vec{j}+4 \vec{k})|=4$ are
6. $\left(-\frac{3}{2}, \frac{1}{2},-2\right), 4$
7. $\left(-\frac{3}{2}, \frac{1}{2},-2\right)$ and 2
8. $\left(-\frac{3}{2}, \frac{1}{2},-2\right), 6$
9. $\left(-\frac{3}{2}, \frac{1}{2},-2\right)$ and 5
10. The vector equation of a plane passing through a point whose position vector is \vec{a} and perpendicular to a vector \vec{n} is
11. $\vec{r} \cdot \vec{n}=\vec{a} \cdot \vec{n}$
12. $\vec{r} \times \vec{n}=\vec{a} \times \vec{n}$
13. $\vec{r}+\vec{n}=\vec{a}+\vec{n}$
14. $\vec{r}-\vec{n}=\vec{a}-\vec{n}$
15. The vector equation of a plane whose distance from the origin is p and perpendicular to a unit vector \hat{n} is
16. $\vec{r} \cdot \vec{n}=p$
17. $\vec{r} \cdot \hat{n}=q$
18. $\vec{r} \times \vec{n}=p$
19. $\vec{r} \cdot \hat{n}=p$
20. The non-parametric vector equation of a plane passing through a point whose position vector is \vec{a} and parallel to \vec{u} and \vec{v} is
21. $\left[\begin{array}{ll}\vec{r}-\vec{a}, & \vec{u}, \\ \vec{v}\end{array}\right]=0$
22. $\left[\begin{array}{lll}\vec{r} & \vec{u} & \vec{v}\end{array}\right]=0$
23. $[\vec{r} \quad \overrightarrow{\vec{b}} \overrightarrow{\vec{u}} \times \vec{v}]=\overline{0}$
are $\vec{a} \cdot \vec{b}$ and parallel to \vec{v} is
24. $\left.\begin{array}{|ccc}\vec{r}-\vec{a} & \vec{b}-\vec{a} & \vec{v}\end{array}\right]=0$
25. $\left.\begin{array}{lll}\vec{r} & \vec{b}-\vec{a} & \vec{v}\end{array}\right]=0$
26. $\left\lfloor\begin{array}{lll}\vec{a} & \vec{b} & \vec{v}\end{array}\right\rfloor=0$
27. $\left\lfloor\begin{array}{lll}\vec{r} & \vec{a} & \vec{b}\end{array}\right]=0$
28. The non-parametric vector equation of a plane passing through three non-collinear points whose position vectors are $\vec{a}, \vec{b}, \vec{c}$ is
29. $\left\lfloor\begin{array}{ccc}\vec{r}-\vec{a} & \vec{b}-\vec{a} & \vec{c}-\vec{a}\end{array}\right]=0$
30. $\left.\left\lvert\, \begin{array}{lll}\vec{r} & \vec{a} & \vec{b}\end{array}\right.\right]=0$
31. $\left\lfloor\begin{array}{lll}\vec{r} & \vec{b} & \vec{c}\end{array}\right]=0$
32. $\left\lfloor\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]=0$
33. The vector equation of a plane passing through the line of intersection of the planes $\vec{r} \cdot \vec{n}_{1}=q_{1}$ and $\vec{r} \cdot \vec{n}_{2}=q_{2}$ is
34. $\left(\vec{r} \cdot \vec{n}_{r}-q_{1}\right)+\lambda\left(\vec{r} \cdot \vec{n}_{2}-q_{2}\right)=0$
35. $\vec{r} \cdot \vec{n}_{1}+\vec{r} \cdot \vec{n}_{2}=q_{1}+\lambda q_{2}$
36. $\vec{r} \times \hat{n}_{1}+\vec{r} \times \vec{n}_{2}=q_{1}+q_{2}$
37. $\vec{r} \times \vec{n}_{1}-\vec{r} \times n_{2}=q_{1}+q_{2}$
38. The angle between the line $\vec{r}=\vec{a}+t \vec{b}$ and the plane $\vec{r} \cdot \vec{n}=q$ is connected by the relation
39. $\cos \theta=\frac{\vec{a} \cdot \vec{n}}{q}$
40. $\cos \theta=\frac{\vec{b} \cdot \vec{n}}{|\vec{b}| \vec{n} \mid}$
41. $\sin \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{n}|}$
42. $\sin \theta=\frac{\vec{b} \cdot \vec{n}}{|\vec{b}||\vec{n}|}$
43. The vector equation of a sphere whose centre is origin and radius ' a ' is
44. $r=\vec{a}$
45. $\vec{r}-\vec{c}=\vec{a}$
46. $|\vec{r}|=|\vec{a}|$
47. $\vec{r}=a$

3. COMPLEX NUMBERS

(ONE QUESTION FOR FULL TEST)
TOTAL NUMBER OF QUESTIONS: 46

1. The complex number form of $\sqrt{-35}$ is
2. i $\sqrt{35}$
3. $-\mathrm{i} \sqrt{35}$
4. i $\sqrt{-35}$
5. 35 i
6. The complex number form of $3-\sqrt{-7}$ is
7. $-3+i \sqrt{-7}$
8. 3-i $\sqrt{-7}$
9. 3- i7
10. $3+\mathrm{i} 7$
11. Real and imaginary parts of $4-i \sqrt{3}$ are
12. $4, \sqrt{3}$
13. $4,-\sqrt{3}$
14. $-\sqrt{3}, 4$
15. $\sqrt{3} .4$
16. Real and imaginary parts of $\frac{3}{2} i$ are
17. $0, \frac{3}{2}$
18. $\frac{3}{2}, 0$
19. 2, 3
20. 3. 2
1. TVM The complex conjugate br 2 a $i \sqrt{7}$ is
2. The complex conjugate of $-4-i 9$ is
3. $-4+i 9$
4. $4+i 9$
5. 4 - i9
4.-4-i9
6. The complex conjugate of $\sqrt{5}$ is
7. $\sqrt{5}$
8. $-\sqrt{5}$
9. $i \sqrt{5}$
10. $-i \sqrt{5}$
11. The standard form $(a+i b)$ of $3+2 i+(-7-i)$ is
12. $4-i$
13. $-4+i$
14. $4+i$
15. $4+4 i$
16. If $a^{\prime}+i b=(8-6 i)-(2 i-7)$ then the values of ' a ' and ' b ' are
17. $8,-15$
18. 8,15
19. 15,9
20. $15,-8$
21. If $\mathrm{p}+\mathrm{iq}=(2-3 \mathrm{i})(4+2 \mathrm{i})$, then q is
22. 14
23. -14
24. -8
25. 8
26. The conjugate of $(2+i)(3-2 i)$ is
27. 8-i
28. $-8-\mathrm{i}$
29. $-8+i$
30. $8+\mathrm{i}$
31. The real and imaginary parts of $(2+i)(3-2 i)$ are
32. $-1,8$
33. $-8,1$
34. $8,-1$
35. $-8,-1$
 DHARMAPURI-9600736379
36. The modulus values of $-2+2 \mathrm{i}$ and $2-3 \mathrm{i}$ are
37. $\sqrt{5}, 5$
38. $2 \sqrt{5}, \sqrt{13}$
39. $2 \sqrt{2}, \sqrt{13}$
40. $-4,1$
41. The modulus values of $-3-2 i$ and $4+3 i$ are
42. 5.5
43. $\sqrt{5}, 7$
44. $\sqrt{6}, 1$
45. $\sqrt{13}, 5$
46. The cube roots of unity are
47. in G.P. with common ratio ω,
48. in G.P. with common difference ω^{2}
49. In A.P. with common difference ω
50. in A.P. with common difference with ω^{2}
51. The arguments of $n^{\text {th }}$ roots of a complex number differ by
52. $\frac{2 \pi}{n}$
53. $\frac{\pi}{n}$
54. $\frac{3 \pi}{n}$
55. $\frac{4 \pi}{n}$
56. Which of the following statements is correct?
57. negative complex numbers exist

58. $(1+i)>(3-2 i)$ is meaningless
59. Which of the following are correct?
a. $\operatorname{Re}(z) \leq|z|$
b. $I m(z) \geq|z|$
c. $\overline{|z|}=|z|$
d. $\overline{\left(z^{n}\right)}=\overline{(z)^{n}}$
60. (a), (b)
61. (b), (c)
62. (b), (c) and (d)
63. (a), (c) and (d)
64. The values of $z+z$ is
65. $2 \operatorname{Re}(z)$
66. $\operatorname{Re}(z)$
67. $\operatorname{Im}(z)$
68. $2 \operatorname{Im}(z)$
69. The value of $z-\bar{z}$ is
70. $2 \operatorname{Im}(z)$
71. $2 i \operatorname{Im}(z)$
72. $\operatorname{Im}(z)$
73. $i \operatorname{Im}(z)$
74. The value of $z \bar{z}$ is
75. $|z|$
76. $|z|^{2}$
77. $2|z|$
$4.2|z|^{2}$
78. If $\left|z-z_{1}\right|=\left|z-z_{2}\right|$ then the locus of z is
79. a circle with centre at the origin
80. a circle with centre at z_{1}
 DHARMAPURI-9600736379
81. a straight line passing through the origin
82. is a perpendicular bisector of the line joining z_{1} and z_{2}
83. If ω is a cube roots of unity, then
84. $\quad \omega^{2}=1$
85. $1+\omega=0$
86. $1+\omega+\omega^{2}=0$
87. $1-\omega+\omega^{2}=0$
88. The principal value of $\arg z$ lies in the interval
89. $\left[0, \frac{\pi}{2}\right]$
90. $(-\pi, \pi]$
91. $[0, \pi]$
92. $(-\pi, 0]$
93. If z_{1} and z_{2} are any two complex numbers then which one of the following is false?
94. $\operatorname{Re}\left(z_{1}+z_{2}\right)=\operatorname{Re}\left(z_{1}\right)+\operatorname{Re}\left(z_{2}\right)$
95. $\operatorname{Im}\left(z_{1}+z_{2}\right)=I_{m}\left(z_{1}\right)+I_{m}\left(z_{2}\right)$
96. $\arg \left(z_{1}+z_{2}\right)=\arg z_{1}+\arg z_{2}$
97. $\left|z_{1} z_{2}\right|=\left|z_{1}\right| \quad\left|z_{2}\right|$
98. The fourth roots of unity are
99. $1 \pm i,-1 \pm i$
100.
101. Cube roots of unity are
102. $1, \frac{-1 \pm i \sqrt{3}}{2}$
103. $i,-1 \pm \frac{i \sqrt{3}}{2}$
104. $1, \frac{1 \pm i \sqrt{3}}{2}$
105. $i, \frac{1 \pm i \sqrt{3}}{2}$
106. The number of values of $(\cos \theta+i \sin \theta)^{\frac{p}{q}}$ where p and q are non-zero integers prime to each other, is
107. p
108. q
109. $\mathrm{p}+\mathrm{q}$
110. $\mathrm{p}-\mathrm{q}$
111. The value of $e^{i \theta}+e^{-i \theta}$ is
112. $2 \cos \theta$
113. $\cos \theta$
114. $2 \sin \theta$
115. $\sin \theta$
116. The value of $e^{i \theta}-e^{-i \theta}$ is
117. $\sin \theta$
118. $2 \sin \theta$
119. $i \sin \theta$
120. $2 i \sin \theta$
121. Geometrical interpretation of \bar{z} is
122. reflection of z on real axis
123. reflection of z on imaginary axis
124. rotation of z about origin
125. rotation of z about origin through $\pi / 2$ in clockwise direction
126. If $z_{1}=a+i b, z_{2}=-a+i b$ then $z_{1}-z_{2}$ lies on
127. real axis
128. imaginary axis
129. the line $y=x$
130. the line $y=-x$
131. Which one of the following is incorrect?
132. $(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta$
133. $(\cos \theta-i \sin \theta)^{n}=\cos n \theta-i \sin n \theta$
134. $(\sin \theta+i \cos \theta)^{n}=\sin n \theta+i \cos n \theta$
135. $\frac{1}{\cos \theta+i \sin \theta}=\cos \theta-i \sin \theta$
136. Polynomial equation $\mathrm{P}(\mathrm{x})=0$ admits conjugate pairs of imaginary roots only if the coefficients are
137. imaginary
138. complex
139. real
140. either real or complex
141. Identify the correct staferment
. Sumbor the modylidatho complex numbers lis equat to their modulys of the sum $]$
142. Modulus of the product of the complex numbers is equal to the sum of their moduli
143. Arguments of the product of two complex numbers is the product of their arguments.
144. Arguments of the product of two complex numbers is equal to sum of their arguments.
145. Which of the following is not true?
146. $\overline{z_{1}+z_{2}}=\overline{z_{1}}+\overline{z_{2}}$
147. $\overline{z_{1} z_{2}}=\overline{z_{1}} \overline{z_{2}}$
148. $\operatorname{Re}(z)=\frac{z+z}{2}$
149. $\operatorname{Im}(z)=\frac{z-z}{2 i}$
150. If z_{1} and z_{2} are complex numbers then which of the following is meaningful?
151. $z_{1}<z_{2}$
152. $z_{1}>z_{2}$
153. $z_{1} \geq z_{2}$
154. $z_{1} \neq z_{2}$
155. Which of the following is incorrect?
156. $\operatorname{Re}(z) \leq|z|$
157. $\operatorname{Im}(z) \leq|z|$
158. $z \bar{z}=|z|^{2}$
159. $\operatorname{Re}(z) \geq|z|$
160. Which of the following is incorrect?
161. $\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$
162. $\left|z_{1}-z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$
163. $\left|z_{1}-z_{2}\right| \geq\left|z_{1}\right|-\left|z_{2}\right|$
164. $\left|z_{1}+z_{2}\right| \geq\left|z_{1}\right|+\left|z_{2}\right|$
165. Which of the following is incorrect?
166. \bar{z} is the mirror image of z on the real axis
167. The polar form of \bar{z} is $(r,-\theta)$
168. -z is the point symmetrical to z about the origin
169. The polar form of -z is $(-r,-\theta)$
170. Which of the following is incorrect?
171. Multiplying a complex number by i is equivalent to rotating the number counter clockwise about the origin through an angle 90°
172. Multiplying a complex number by $-i$ is equivalent to rotating the number clockwise about the origin through an angle 90°.
173. Dividing a complex number by i is equivalent to rotating the number counter clockwise about the origin through an angle 90°
174. Dividing a complex number by i is equivalent to rotating the number clockwise about the origin through an angle 90°.
175. Which of the following is incorrect regarding $\mathrm{n}^{\text {th }}$ roots of unity?
176. The number of distinct roots is n
177. the roots are in G.P. with common ratio cis $\frac{2 \pi}{n}$
178. the arguments are inA.P with common difference $\frac{2 \pi}{n}$.
179. nr reduct oftabe rootsis 0 and the sun or theroots in \pm
180. Whien of the following are true?
181. If n is a positive integer then $(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta$
182. If n is a negative integer then $(\cos \theta+i \sin \theta)^{n}=\cos n \theta-i \sin n \theta$
183. If n is a fraction then $\cos n \theta+i \sin n \theta$ is one of the values of $(\cos n \theta+i \sin \theta)^{n}$.
184. If n is a negative integer then $(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta$
185. (i), (ii), (iii), (iv)
186. (i), (iii), (iv)
187. (i), (iv)
188. (i) only
189. If $O(0,0), A\left(Z_{1}\right), B\left(Z_{2}\right), B^{\prime}\left(-Z_{2}\right)$ are the complex numbers in a argand plane then which of the following are correct?
(i) In the parallelogram $O A C B$, represents $Z_{1}+Z_{2}$
(ii) In the argand plane E represents $Z_{1} Z_{2}$ where $\mathrm{OE}=\mathrm{OA} . \mathrm{OB}$ and OE makes an angle
$\arg \left(z_{1}\right)+\arg \left(z_{2}\right)$ with positive real axis.
(iii) In the argand parallelogram $O B^{\prime} D A$, D represents $Z_{1}-Z_{2}$
(iv) In the argand plane F represents $\frac{Z_{1}}{Z_{2}}$ where $O F=\frac{O A}{O B}$ and $O F$ makes an angle
$\arg \left(z_{1}\right)-\arg \left(z_{2}\right)$ with positive real axis.
190. (i), (ii), (iii), (iv)
191. (i), (iii), (iv)
192. (i), (iv)
193. (i) only
194. If $Z=0$, then the $\arg (Z)$ is
195. 0
196. π
197. $\frac{\pi}{2}$
198. indeterminate

4. ANALYTICAL GEOMETRY

(ONE QUESTION FOR FULL TEST)
TOTAL NUMBER OF QUESTIONS: 92

1. The axis of the parabola $y^{2}=4 x$ is
2. $x=0$
3. $y=0$
4. $x=1$
5. $y=1$
6. The vertex of the parabola $y^{2}=4 x$ is
7. $(1,0)$
8. $(0,1)$
9. $(0,0)$
10. $(0,-1)$
11. The focus of the parabola $y^{2}=4 x$ is
12. $(0,1)$
13. $(1,1)$
14. $(0,0)$
15. $(0,0)$
16. The directrix of the parabola $y^{2}=4 x$ is
17. $y=-1$
18. $x=-1$
19. $y=1$
20. $x=1$
21. The equation of the latus rectum of $y^{2}=4 x$ is
22. $x=1$

23. $x_{0}=4$
24. $\gamma=-1$
25. 2
26. 3
27. 1

28. The axis of the parabola $x^{2}=-4 y$ is
29. $y=1$
30. $x=0$
31. $y=0$
32. $x=1$
33. The vertex of the parabola $x^{2}=-4 y$ is
34. $(0,1)$
35. $(0,-1)$
36. $(1,0)$
37. $(0,0)$
38. The focus of the parabola $x^{2}=-4 y$ is
39. (0,0)
40. $(0,-1)$
41. $(0,1)$
42. $(1,0)$
43. The directrix of the parabola $x^{2}=-4 y$ is
44. $x=1$
45. $x=0$
46. $y=1$
47. $y=0$
48. The equation of the latus rectum of $x^{2}=-4 y$ is
49. $x=-1$
50. $y=-1$
51. $x=1$
52. $y=1$
53. The length of the latus rectum of $x^{2}=-4 y$ is
54. 1
55. 2
3.3
56. 4
57. The axis of the parabola $y^{2}=-8 x$ is
58. $x=0$
59. $x=2$
60. $y=2$
61. $y=0$
62. The vertex of the parabola $y^{2}=-8 x$ is
63. $(0,0)$
64. $(2,0)$
65. $(0,-2)$
66. $(2,-2)$
67. The focus of the parabola $y^{2}=-8 x$ is
68. $(0,-2)$
69. $(0,2)$
70. $(-2,0)$
71. $(2,0)$
72. The equation of the directrix of the parabola $y^{2}=-8 x$ is
73. $y+2=0$
74. $x-2=0$
75. $y-2=0$
76. $x+2=0$
77. The equation of the latus rectum of $y^{2}=-8 x$ is
78. $y-2=0$
79. $y+2=0$
80. $x-2=0$
81. $x+2=0$
82. The length of the latus rectum of $y^{2}=-8 x$ is
83. 8
84. 6
3.4
85. -8
86. The axis of the parabola $x^{2}=20 y$ is
87. $y=5$
88. $x=5$
89. $x=0$
90. $y=0$

91. The focus of the parabola $x^{2}=20 y$ is
92. $(0,0)$
93. $(5,0)$
94. $(0,5)$
95. $(-5,0)$
96. The equation of the directrix of the parabola $x^{2}=20 y$ is
97. $y-5=0$
98. $x+5=0$
99. $x-5=0$
100. $y+5=0$
101. The equation of the latus rectum of the parabola $x^{2}=20 y$ is
102. $x-5=0$
103. $y-5=0$
104. $y+5=0$
105. $x+5=0$
106. The length of the latus rectum of the parabola $x^{2}=20 y$ is
107. 20
108. 10
109. 5
110. 4
111. If the centre of the ellipse is $(2,3)$ one of the foci is $(3,3)$ then the other focus is
112. $(1,3)$
113. $(-1,3)$
114. $(1,-3)$
115. $(-1,-3)$
116. The equation of the major and minor axes of $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ are
117. $x=3, y=2$
118. $x=-3, y=-2$
119. $x=0, y=0$
120. $y=0, x=0$
121. The equation of the major and minor axes of $4 x^{2}+3 y^{2}=12$ are
122. The foci of the hyperbola $\frac{y^{2}}{9}-\frac{x^{2}}{25}=1$ are
123. $(0, \pm \sqrt{34})$
124. $(\pm 34,0)$
125. $(0, \pm 34)$
126. $(\pm \sqrt{34}, 0)$
127. The vertices of the hyperbola $25 x^{2}-16 y^{2}=400$ are
128. $(0, \pm 4)$
129. $(\pm 4,0)$
130. $(0, \pm 5)$
131. $(\pm 5,0)$
132. The equation of the tangent at $(3,-6)$ to the parabola $y^{2}=12 x$ is
133. $x-y-3=0$
134. $x+y-3=0$
135. $x-y+3=0$
136. $x+y+3=0$
137. The equation of the tangent at $(-3,1)$ to the parabola $x^{2}=9 y$ is
138. $3 x-2 y-3=0$
139. $2 x-3 y+3=0$
140. $2 x+3 y+3=0$
141. $3 x+2 y+3=0$
142. The equation of chord of contact of tangents from the point $(-3,1)$ to the parabola $y^{2}=8 x$ is

143. The equation of chord of contact of tangents from the point $(2,4)$ to the ellipse $2 x^{2}+5 y^{2}=20$ is
144. $x-5 y+5=0$
145. $5 x-y+5=0$
146. $x+5 y-5=0$
147. $5 y-y-5=0$
148. The equation of chord of contact of tangents from the point $(5,3)$ to the hyperbola $4 x^{2}-6 y^{2}=24$ is
149. $9 x+10 y+12=0$
150. $10 x+9 y-12=0$
151. $9 x-10 y+12=0$
152. $10 x-9 y-12=0$
153. The combined equation of the asymptotes to the hyperbola $36 x^{2}-25 y^{2}=900$ is
154. $25 x^{2}+36 x^{2}=0$
155. $36 x^{2}-25 y^{2}=0$
156. $36 x^{2}+25 y^{2}=0$
157. $25 x^{2}-36 y^{2}=0$
158. The angle between the asymptotes of the hyperbola $24 x^{2}-8 y^{2}=27$ is
159. $\frac{\pi}{3}$
160. $\frac{\pi}{3}$ or $\frac{2 \pi}{3}$
161. $\frac{2 \pi}{3}$
162. $\frac{-2 \pi}{3}$
163. The point of contact of the tangent $y=m x+c$ and the parabola $y^{2}=4 a x$ is

164. $x^{2}+y^{2}=a^{2}+b^{2}$
165. $x=0$
166. The locus of the foot of perpendicular from the focus on any tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is
167. $x^{2}+y^{2}=a^{2}-b^{2}$
168. $x^{2}+y^{2}=a^{2}$
169. $x^{2}+y^{2}=a^{2}+b^{2}$
170. $x=0$
171. The locus of the foot of perpendicular from the focus on any tangent to the parabola $y^{2}=4 a x$ is
172. $x^{2}+y^{2}=a^{2}-b^{2}$
173. $x^{2}+y^{2}=a^{2}$
174. $x^{2}+y^{2}=a^{2}+b^{2}$
175. $x=0$
176. The locus of the point of intersection of perpendicular tangents to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is
177. $x^{2}+y^{2}=a^{2}-b^{2}$
178. $x^{2}+y^{2}=a^{2}$
179. $x^{2}+y^{2}=a^{2}+b^{2}$
180. $x=0$

181. $x^{2}+y^{2}=a^{2}+b^{2}$
182. $x=0$
183. The condition that the line $l x+m y+n=0$ may be a tangent to the parabola $y^{2}=4 a x$ is
184. $a^{2} l^{2}+b^{2} m^{2}=n^{2}$
185. $a m^{2}=\ln$
186. $a^{2} l^{2}-b^{2} m^{2}=n^{2}$
187. $4 c^{2} l m=n^{2}$
188. The condition that the line $l x+m y+n=0$ may be a tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is
189. $a^{2} l^{2}+b^{2} m^{2}=n^{2}$
190. $a m^{2}=\ln$
191. $a^{2} l^{2}-b^{2} m^{2}=n^{2}$
192. $4 c^{2} l m=n^{2}$
193. The condition that the line $l x+m y+n=0$ may be a tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is
194. $a^{2} l^{2}+b^{2} m^{2}=n^{2}$
195. $a m^{2}=\ln$
196. $a^{2} l^{2}-b^{2} m^{2}=n^{2}$
197. $4 c^{2} l m=n^{2}$
198. The condition that the line $l x+m y+n=0$ may be a tangent to the rectangular hyperbola $x y=c^{2}$ is
199. $a^{2} l^{2}+b^{2} m^{2}=n^{2}$
200. $a m^{2}=\ln$
201. $a^{2} l^{2}-b^{2} m^{2}=n^{2}$
202. $4 c^{2} l m=n^{2}$
203. The foot of a perpendicular from a focus of the hyperbola on an asymptote lies on the
204. centre
205. corresponding directrix
206. vertex
207. L.R.
208. The angular displacement of a fly wheel in radians is given by $\theta=9 t^{2}-2 t^{3}$. The time when the angular acceleration zero is
209. 2.5 s
210. 3.5 s
211. 1.5 s
212. 4.5 s
213. Food pockets were dropped from an helicopter during the flood and distance fallen in ' t ' seconds is given by $y=\frac{1}{2} g t^{2}\left(g=9.8 \mathrm{~m} / s^{2}\right)$. Then the speed of the food pocket after it has fatlen for ' 2 ' seconds is
214. $19.6 \mathrm{~m} / \mathrm{sec}$
215. $9.8 \mathrm{~m} / \mathrm{sec}$
216. $-19.6 \mathrm{~m} / \mathrm{sec}$
217. $-9.8 \mathrm{~m} / \mathrm{sec}$
218. An object dropped from the sky follows the law of motion $x=\frac{1}{2} g t^{2}\left(\mathrm{~g}=9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$. The acceleration of the object when $t=2$ is
219. $-9.8 \mathrm{~m} / \mathrm{sec}^{2}$
220. $9.8 \mathrm{~m} / \mathrm{sec}^{2}$
221. $19.6 \mathrm{~m} / \mathrm{sec}^{2}$
222. $-19.6 \mathrm{~m} / \mathrm{sec}^{2}$
223. A missile fired from ground level rises x metres vertically upwards in ' t ' seconds and $x=t(100-12.5 t)$. Then the maximum height reached by the missile is

has a
224. vertical tangent $\mathrm{y}=x_{1}$
225. horizontal tangent $\mathrm{x}=x_{1}$
226. vertical tangent $\mathrm{x}=x_{1}$
227. horizontal tangent $\mathrm{y}=y_{1}$
228. The curve $y=f(x)$ and $y=g(x)$ cut orthogonally if at the point of intersection
229. slope of $f(x)=$ slope of $g(x)$
230. slope of $f(x)+$ slope of $g(x)=0$
3.. slope of $f(x)$ /slope of $g(x)=-1$
231. $[$ slope of $f(x)][$ slope of $g(x)]=-1$
232. The law of the mean can also be put in the form
233. $f(a+h)=f(a)-h f^{\prime}(a+\theta h), \quad 0<\theta<1$
234. $f(a+h)=f(a)+h f^{\prime}(a+\theta h), \quad 0<\theta<1$
235. $f(a+h)=f(a)+h f^{\prime}(a-\theta h), \quad 0<\theta<1$
236. $f(a+h)=f(a)-h f^{\prime}(a-\theta h), \quad 0<\theta<1$
237. l'Hôpital's rule cannot be applied to $\frac{x+1}{x+3}$ as $x \rightarrow 0$ because $\mathrm{f}(\mathrm{x})=\mathrm{x}+1$ and $\mathrm{g}(\mathrm{x})=\mathrm{x}+3$ are

3. finite no. of maximum values

4. infinite no. of maximum values
5. The function $f(x)=x^{3}$ has
6. absolute maximum
7. absolute minimum
8. local maximum
9. no extrema
10. If f has a local extremum at \boldsymbol{a} and if $f^{\prime}(a)$ exists then
11. $f^{\prime}(a)<0$
12. $f^{\prime}(a)>0$
13. $f^{\prime}(a)=0$
14. $f^{\prime \prime}(a)=0$
15. In the following figure,
the curve $y=f(x)$ is
16. concave upward
17. convex upward
18. changes from cancavity to convexity
19. changes from convexity and concavity
20. The point that separates the convex part of a continuous curve from the concave part is
21. the maximum point
22. f is a twice differentrable function on an intervat and it $f(x)>0$ for all x in the domainf of f, then f is
23. concave upward
2.convex upward
24. increasing
25. decreasing
26. $x=x_{0}$ is a root of eyen order for the equation $f^{\prime}(x)=0$, then $x=x_{0}$ is a
27. maximum point
28. minimum point
29. inflection point
30. critical point
31. If x_{0} is the x-coordinate of the point of inflection of a curve $y=f(x)$, then (second derivative exists)
32. $f\left(x_{0}\right)=0$
33. $f^{\prime}\left(x_{0}\right)=0$
34. $f^{\prime \prime}\left(x_{0}\right)=0$
35. $f^{\prime \prime}\left(x_{0}\right) \neq 0$
36. The statement "If f is continuous on a closed interval [a, b], then f attains an absolute maximum value $f(c)$ and an absolute minimum value $f(d)$ at some number c and d in $[a, b]$ " is
37. The extreme value theorem
38. Fermat's theorem
39. Law of mean
40. Rolle's theorem
41. The statement: " If f has a local extremum (minimum or maximum) at c and if $f^{\prime}(c)$ exists then $f^{\prime}(c)=0$ " is
42. the extreme value theorem
43. Fermat's theorem
44. Law of mean
45. Rolle's theorem
46. Identify the false statement:
47. all the stationary numbers are critical numbers
48. at the stationary point the first derivative is zero
49. at critical numbers the first derivative need not exist
50. all the critical numbers are stationary numbers
51. Identify the correct statement:
a. a continuous function has local maximum then it has absolute maximum
b. a continuous function has local minimum then it has absolute minimum
c. a continuous function has absolute maximum then it has local maximum
d. a continuous function has absolute minimum then it has local minimum
52. a and b 2. ${ }^{2}$ and c

b. Every constant function is a decreasing function
c. Every identity function is an increasing function
d. Every identity function is a decreasing function
53. a, b and c
54. a and c
55. c and d
56. a, c and d
57. Which of the following statement is incorrect?
58. Initial velocity means velocity at $\mathrm{t}=0$
59. Initial acceleration means acceleration at $t=0$
60. If the motion is upward, at the maximum height, the velocity is not zero
61. If the motion is horizontal, $v=0$ when the particle comes to rest
62. Which of the following statements are correct (m_{1} and m_{2} are slopes of two lines)
a. If the two lines are perpendicular then $m_{1} m_{2}=-1$
b. If $m_{1} m_{2}=-1$, then two lines are perpendicular
c. If $m_{1}=m_{2}$, then the two lines are parallel
d. If $m_{1}=\frac{1}{m_{2}}$ then the two lines are perpendicular
(*** QUESTION FOR FULL TEST)
TOTAL NUMBER OF QUESTIONS: 45
63. For the function $y=x^{3}+2 x^{2}$ the value of dy when $x=2$ and $d x=0.1$ is
64. 1
65. 2
3.3
4.4
66. For the function $y=x^{3}+2 x^{2}$ and $x=2$ and $d x=0.1, d y=$
67. 2
68. 1
69. 0.2
70. 1
71. If $u=f(x, y)$ then with usual notations, $u_{x y}=u_{y x}$ if
72. u is continuous
73. u_{x} is continuous
74. u_{y} is continuous
75. u, u_{x}, u_{y} are continuous
76. If $u=f(x, y)$ is a differentiable function of x and y ; x and y are differentiable functions of ' t ' then

77. If $f(x, y)$ is a homogeneous functions of degree n then $x \frac{\partial f}{\partial x}+y \frac{\partial f}{\partial y}=$
78. f
79. $n f$
80. $n(n-1) f$
81. $n(n+1) f$
82. If $u(x, y)=x^{4}+y^{3}+3 x^{2} y^{2}+3 x^{2} y$ then $\frac{\partial^{2} u}{\partial x \partial y}$ is
83. $12 x y+6 x$
84. $12 x y-6 x$
85. $12 x^{2} y-6 x$
86. $12 x y^{2}-6 x$
87. If $u(x, y)=x^{4}+y^{3}+3 x^{2} y^{2}+3 x^{2} y$ then $\frac{\partial^{2} u}{\partial y \partial x}=$
88. $12 x y+6 x$
89. $12 x y-6 x$
90. $12 x^{2} y-6 x$
91. $12 x y^{2}-6 x$
92. If $u(x, y)=x^{4}+y^{3}+3 x^{2} y^{2}+3 x^{2} y$ then $\frac{\partial^{2} u}{\partial x^{2}}=$
93. $3 y^{2}+6 x^{2} y+3 x^{2}$
94. $6 y+6 x^{2}$
95. $12 x^{2} y-6 x$
96. $12 x^{2}+6 y^{2}+6 y$
97. If $u(x, y)=x^{4}+y^{3}+3 x^{2} y^{2}+3 x^{2} y$ then $\frac{\partial^{2} u}{\partial y^{2}}=$
98. $6 y+6 x^{2}$
99. $12 x y-6 x$
100. $12 x^{2} y-6 x$
101. $3 y^{2}+6 x^{2} y+3 x^{2}$
102. The differential on y of the function $y=\sqrt[4]{x}$ is
103. $\frac{1}{4} x^{-3 / 4}$
104. $\frac{1}{4} x^{-3 / 4} d x$
105. $x^{-3 / 4} d x$
106. 0
107. The differential of y if $y=x^{5}$ is
108. $5 x^{4}$
109. $5 x^{4} d x$
110. $5 x^{5} d x$
111. $5 x$
112. The differential of y if $\mathrm{y}=\sqrt{x^{4}+x^{2}+1}$ is
113. $\frac{1}{2}\left(4 x^{3}+2 x\right)^{-\frac{1}{2}} d x$
114. $\frac{1}{2}\left(x^{4}+x^{2}+1\right)^{-\frac{1}{2}}\left(4 x^{3}+2 x\right) d x$
115. $\frac{1}{2}\left(4 x^{3}+2 x\right)^{-\frac{1}{2}}$
116. $\frac{1}{2}\left(x^{4}+x^{2}+1\right)^{-\frac{1}{2}}\left(4 x^{3}+2 x\right)$
117. $\frac{-7}{(2 x+3)^{2}} d x$
118. $\frac{1}{(2 x+3)^{2}} d x$
119. $\frac{7}{(2 x+3)^{2}} d x$
120. $\frac{7}{(2 x+3)^{2}}$
121. The differential of y if $y=\sin 2 x$ is
122. $2 \cos 2 x$.
123. $2 \cos 2 x . d x$
124. $-2 \cos 2 x . d x$
125. $\cos 2 x \cdot d x$
126. The differential of $x \tan x$ is
127. $\left(x \sec ^{2} x+\tan ^{2} x\right)$
128. $\left(x \sec ^{2} x-\tan x\right) d x$
129. $x \sec ^{2} x d x$
130. $\left(x \sec ^{2} x+\tan x\right) d x$
131. If $u(x, y)=x^{4}+y^{3}+3 x^{2} y^{2}+3 x^{2} y$ then $\frac{\partial u}{\partial y}$ is
132. $3 y^{2}+6 x y+3 x^{2}$
133. $3 y^{2}+6 x y^{2}+3 x^{2}$
134. $3 y^{2}+6 x^{2} y+3 x^{2}$
135. $3 y^{2}+6 x^{2} y^{2}+3 x^{2}$
136. The curve $y^{2}=x^{2}\left(1-x^{2}\right)$ is defined only for
137. $x \leq 2$ and $x \geq-2$
138. $x \leq 1$ and $x \geq-1$
139. $x \leq-1$ and $x \geq 1$
140. $x<1$ and $x>-1$
141. The curve $y^{2}=x^{2}\left(1-x^{2}\right)$ is symmetrical about
142. x-axis only
143. y-axis only
144. x and y axes only
145. x, y axes and the origin
146. The curve $y^{2}=x^{2}\left(1-x^{2}\right)$ has
147. only one loop between $x=0$ and $x=1$
148. two loops between $x=-1$ and $x=0$
149. two loops between $x=-1$ and $0 ; 0$ and 1
150. no loop
151. The curve $y^{2}=x^{2}\left(1-x^{2}\right)$ has
152. an asymptote $x=-1$
153. an asymptote $x=1$
154. two asymptotes $x=1$ and $x=-1$
155. no asymptote
156. The curve $y^{2}(2+x)=x^{2}(6-x)$ exists for
157. $-2<x \leq 6$
158. $-2 \leq x \leq 6$
159. $-2<x<6$
160. $-2 \leq x<6$

161. An asymptote to the curve $y^{2}(2+x)=x^{2}(6-x)$ is
162. $x=2$
163. $x=-2$
164. $x=6$
165. $x=-6$
166. The curve $y^{2}(2+x)=x^{2}(6-x)$ has
167. only one loop between $x=0$ and $x=6$
168. two loops between $x=0$ and $x=6$
169. only one loop between $x=-2$ and $x=6$
170. two loops between $x=-2$ and $x=6$
171. The curve $y^{2}=x^{2}(1-x)$ is defined only for
172. $x \leq 1$
173. $x \geq 1$
174. $x<1$
175. $x>1$
176. The curve $y^{2}=x^{2}(1-x)$ is symmetrical about
177. y-axis only
178. x-axis only
179. both the axes
180. origin only
181. The curve $y^{2}=x^{2}(1-x)$ has
182. an asymptote $\mathrm{y}=0$
183. an asymptote $\mathrm{x}=1$
184. an asymptote $\mathrm{y}=1$
185. no asymptote
186. The curve $y^{2}=x^{2}(1-x)$ has
187. only one loop between $x=-1$ and $x=0$
188. only one loop between $x=0$ and $x=1$
189. two loops between $x=-1$ and $x=1$
190. no loop
191. The curve $y^{2}=(x-a)(x-b)^{2}, a, b>0$ and $a>b$ does not exist for
192. $x \geq a$
193. $x=b$
194. $b<x<a$
195. $x=a$
196. The curve $y^{2}=(x-a)(x-b)^{2}$ is symmetrical about
197. origin only
198. y-axis only
199. x-axis only
200. both x and y axes
201. The curve $y^{2}=(x-a)(x-b)^{2}$, has $a, b>0$ and $a>b$
202. an asymptote $\mathrm{x}=\mathrm{a}$
203. an asymptote $\mathrm{x}=\mathrm{b}$
204. an asymptote $\mathrm{y}=\mathrm{a}$
205. no asymptotes
206. The curve $y^{2}=(x-a)(x-b)^{2}, a, b>0$ and $a>b$ has
207. a loop between $\mathrm{x}=\mathrm{a}$ and $\mathrm{x}=\mathrm{b}$

208. no loop
209. The curve $y^{2}(1+x)=x^{2}(1-x)$ is defined for
210. $-1 \leq x \leq 1$
211. $-1<x \leq 1$
212. $-1 \leq x<1$
213. $-1<x<1$
214. The curve $y^{2}(1+x)=x^{2}(1-x)$ is symmetrical about
215. both the axes
216. origin only
217. y-axis only
218. x-axis only
219. The asymptote to the curve $y^{2}(1+x)=x^{2}(1-x)$ is
220. $x=1$
221. $y=1$
222. $y=-1$
223. $x=-1$
224. The curve $y^{2}(1+x)=x^{2}(1-x)$ has
225. a loop between $x=-1$ and $x=1$
226. a loop between $x=-1$ and $x=0$
227. a loop between $x=0$ and $x=1$
228. no loop
229. The curve $a^{2} y^{2}=x^{2}\left(a^{2}-x^{2}\right)$ is defined for
230. $x \leq a$ and $x \geq-a$
231. $x<a$ and $x>-a$
232. $x \leq-a$ and $x \geq a$
233. $x \leq a$ and $x>-a$
234. The curve $a^{2} y^{2}=x^{2}\left(a^{2}-x^{2}\right)$ is symmetrical about
235. x -axis only
236. y-axis only
237. both the axes
238. both the axes and origin
239. The curve $a^{2} y^{2}=x^{2}\left(a^{2}-x^{2}\right)$ has
240. an asymptote $\mathrm{x}=\mathrm{a}$
241. an asymptote $\mathrm{x}=-\mathrm{a}$
242. an asymptote $x=0$
243. no asymptotes
244. The curve $a^{2} y^{2}=x^{2}\left(a^{2}-x^{2}\right)$ has
245. a loop between $x=a$ and $x=-a$
246. two loops between $x=-a$ and $x=0 ; x=0$ and $x=a$
247. two loops between $x=0$ and $x=a$
248. no loop
249. The curve $y^{2}=(x-1)(x-2)^{2}$ is not defined for
250. $x \geq 1$
251. $x \geq 2$
252. $x<2$
253. $x<1$
254. The curve $y^{2}=(x-1)(x-2)^{2}$ is symmetrical aabout

255. The curve $y^{2}=(x-1)(x-2)^{2}$ has
256. an asymptote $x=1$
257. an asymptote $x=2$
258. two asymptotes $x=1$ and $x=2$
259. no asymptotes
260. The curve $y^{2}=(x-1)(x-2)^{2}$ has
261. two loops between $x=0$ and $x=2$
262. one loop between $x=0$ and $x=1$
263. one loop between $x=1$ and $x=2$
264. nóloop
265. If $u(x, y)=x^{4}+y^{3}+3 x^{2} y^{2}+3 x^{2} y$ then $\frac{\partial u}{\partial x}$ is
266. $4 x^{3}+6 x y^{2}+6 x y$
267. $3 x^{4}+6 x^{2} y+3 x y^{2}$
268. $4 x^{3}-6 x^{2} y+6 x y^{2}$
269. $4 x^{3}+6 x^{2} y^{2}+3 x y$

* If $a^{2} y^{2}=x^{2}\left(a^{2}-x^{2}\right), a>0$, then the loops are formed at
a) $-\mathrm{a}<\mathrm{x}<0 \quad \& 0<\mathrm{x}<\mathrm{a}$
b) $-\mathrm{a} \leq x \leq 0 \& 0 \leq x \leq a$
c) $-\mathrm{a}<\mathrm{x} \leq 0 \quad \& 0<x \leq a$
d) $-\mathrm{a} \leq \mathrm{x}<0 \quad \& 0 \leq \mathrm{x}<\mathrm{a}$
* They asymptotes to the curve $y^{2}(2+x)=x^{2}(6-x)$ is
a) $x=2$
b) $x=-2$
c) $x=6$
d) $x=-6$

20. $\int_{0}^{\infty} x^{5} e^{-4 x} d x$ is
21. $\frac{\angle 6}{4^{6}}$
22. $\frac{\angle 6}{4^{5}}$
23. $\frac{\angle 5}{4^{6}}$
24. $\frac{\angle 5}{4^{5}}$
25. $\int_{0}^{\infty} e^{-m x} x^{7} d x$ is
26. $\frac{\angle m}{7^{m}}$
27. $\frac{\angle 7}{m^{7}}$
28. $\frac{\angle m}{7^{m+1}}$
29. $\frac{\angle 7}{m^{8}}$
30. $\int_{0}^{\infty} x^{6} e^{-\frac{x}{2}} d x$ is
31. $\frac{\angle 6}{2^{7}}$
32. $\frac{\angle 6}{2^{6}}$
33. $2^{6} \angle 6$
34. $2^{7} \angle 6$
35. If $I_{n}=\int \cos ^{n} x d x$, then $I_{n}=$
36. $-\frac{1}{n} \cos ^{n-1} x \sin x+\frac{n-1}{n} I_{n-2}$
37. $\cos ^{n-1} x \sin x+\frac{n-1}{n} I_{n-2}$

* The area of the region bounded by the ellips $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \quad$ is

1. $2 \pi \mathrm{a}^{2}$ sq. units
2. $2 \pi \mathrm{a}^{2}$ sq. units
3. 2π ab sq. units
4. π ab sq. units

* The length of the curve $x=a(t-\sin t), y=a(1-\cos t)$ between $t=0$ and $t=\pi$ is

1. 8 a
2. 6 a
3. 4 a
4. 3 a
5. The order and degree of the differential equation $\frac{d^{3} y}{d x^{3}}+\left(\frac{d^{2} y}{d x^{2}}\right)^{3}+\left(\frac{d y}{d x}\right)^{5}+y=7$ are
6. 3,1
7. 1,3
8. 3,5
9. 2,3
10. The order and degree of the differential equation $y=4 \frac{d y}{d x}+3 x \frac{d x}{d y}$ are
11. 2,1
12. 1,2
13. 1,1
14. 2,2
15. The order and degree of the differential equation $\frac{d^{2} y}{d x^{2}}=\left[4+\left(\frac{d y}{d x}\right)^{2}\right]^{\frac{3}{4}}$ are
16. 2,1
17. 1,2
18. 2, 4
19. 4,2
20. The order and degree of the differential equation $\left(1+y^{\prime}\right)^{2}=y^{\prime 2}$ are

21. The order and degree of the differential equation $\frac{d y}{d x}+y=x^{2}$ are
22. 1,1
23. 1,2
24. 2,1
25. 0,1
26. The order and degree of the differential equation $y^{\prime}+y^{2}=x$ are
27. 2,1
28. 1, 1
29. 1,0
30. 0,1
31. The order and degree of the differential equation $y^{\prime \prime}+3 y^{\prime 2}+y^{3}=0$ are
32. 2,2
33. 2,1
34. 1,2
35. 3,1
36. The order and degree of the differential equation $\frac{d^{2} y}{d x^{2}}+x=\sqrt{y+\frac{d y}{d x}}$ are
37. 1,2
38. $2, \frac{1}{2}$
39. 2,2
40. The order and degree of the differential equation $\frac{d^{2} y}{d x^{2}}-y+\left(\frac{d y}{d x}+\frac{d^{3} y}{d x^{3}}\right)^{\frac{3}{2}}=0$ are
41. 2,3
42. 3,3
43. 3,2
44. 2,2
45. The order and degree of the differential equation $y^{\prime \prime}=\left(y-y^{13}\right)^{\frac{2}{3}}$ are

9. DISCRETE MATHEMATICS (ONE QUESTION FOR FULL TEST)

TOTAL NUMBER OF QUESTIONS: 39

1. Which of the following are statements?
(i) Chennai is the capital of TamilNadu.
(ii) The earth is a planet.
(iii) Rose is a flower.
(iv) Every triangle is an isosceles triangle.

(i) Three plus four is eight.
(ii) The sun is a planet.
(iii) Switch on the light.
(iv) Where are you going?
2. (i) and (ii)
3. (ii) and (iii)
4. (iii) and (iv)
5. (iv) only
6. The truth values of the following statements are
(i) Ooty is in Tamilnadu and $3+4=8$
(ii) Ooty is in Tamilnadu and $3+4=7$
(iii) Ooty is in Kerala and $3+4=7$
(iv) Ooty is in Kerala and $3+4=8$
7. FTFF
8. FFFT
9. TTFF
4.TFTF
10. The truth values of the following statements are
(i) Chennai is in India or $\sqrt{2}$ is an integer.
(ii) Chennai is in India or $\sqrt{2}$ is an irrational number.
(iii) Chennai is in China or $\sqrt{2}$ is an integer.
(iv) Chennai is in China or $\sqrt{2}$ is an irrational number.
11. TFTF
12. TFFT
13. FTFT
14. TTFT
15. Which of the following are not statements?
(i) All natural numbers are integers.
(ii) A square has five sides.
(iii) The sky is blue.
(iv) How are you?
16. (iv) only
17. (i) and (iv)
18. (i), (ii), (iii)
19. (iii) and (iv)
20. Which of the following are statements?
(i) $7+2<10$.
(ii) The set of rational numbers is finite.
(iii) How beautiful you are!
(iv) Wish you all success.
21. (iii), (iv)
22. (i), (ii)
23. (i), (iii)
24. (ii), (iv)
25. The truth values of the following statements are

(iii) Milk is white.
(iv) The number 30 has four prime factors.
26. TTTF
27. TTTT
28. TFTF
29. FTTT
30. The truth values of the following statements are
(i) Paris is in France.
(ii) $\sin x$ is an even function.
(iii) Every square matrix is non-singular.
(iv) Jupiter is a planet.
31. TFFT
32. FTFT
33. FTTF
4.FFTT
34. Let p be "Kamala is going to school" and q be "There are twenty students in the class". "Kamala is not going to school or there are twenty students in the class" stands for
35. $p \vee q$
36. $p \wedge q$
37. $\sim p$
38. $\sim p \vee q$
39. If p stands for the statement "Sita likes reading" and q for the statement "Sita likes playing". "Sita likes neither reading nor playing" stands for
40. $\sim p \wedge \sim q$
41. $p \wedge \sim q$
42. $\sim p \wedge q$
43. $p \wedge q$
44. If p is true and q is unknown then
45. $\sim p$ is true
46. $p \vee(\sim p)$ is false
47. $p \wedge(\sim p)$ is true
48. $p \vee q$ is true
49. If p is true and q is false then which of the following is not true?
50. $p \rightarrow q$ is false
51. $p \vee q$ is true
52. $p \wedge q$ is false
53. $p \leftrightarrow q$ is true
54. Which of the following is not true?
55. Negation of a negation of a statement is the statement itself.
56. If the last column of its truth table contains only T then it is tautology.
57. If the last column of its truth table contains only F then it is contradiction.
58. If p and q are any two statements then $p \leftrightarrow q$ is a tautology,
59. Which of the following are binary operations on R ?
a. $\mathrm{a} * \mathrm{~b}=\min \{\mathrm{a}, \mathrm{b}\}$
b. $a^{*} b=\max \{a, b\}$
c. $\mathrm{a}^{*} \mathrm{~b}=\mathrm{a} \quad \mathrm{d} . \mathrm{a} \cdot \mathrm{b}=\mathrm{b}$
60. all
61. a, b and c
62. b,c and d
63. c, d
64. '+' is not a binary operarion on

65. ' - ' is a binary operation on
66. N
67. $\mathrm{Q}-\{0\}$
68. R- $\{0\}$
69. Z
70. ' \div ' is a binary operation on
71. N
2.R
72. Z
73. C- $\{0\}$
74. In congruence modulo5, $\{x \in z / x=5 k+2, k \in z\}$ represents
75. [0]
76. $[5]$
77. [7]
78. [2].
79. $[5]_{{ }_{12}}[11]$ is
80. [55]
81. [12]
82. [7]
83. [11]
84. $[3]++_{8}[7]$ is
85. 10$]$
86. [8]
87. $[5]$
88. [2]
89. In the group ($\mathrm{G},.), \mathrm{G}=\{1,-1, \mathrm{i},-\mathrm{i}\}$ the order of -1 is
90. -1
91. 1
3.2
92. 0
93. In the group (G, .), $G=\{1,-1, i,-i\}$ the order of -i is
94. 2
95. 0
3.4
96. 3
97. In the group ($\mathrm{G},.), \mathrm{G}=\left\{1, \omega, \omega^{2}\right\}, \omega$ is cube root of unity, then $\mathrm{O}\left(\omega^{2}\right)$ is
98. 2
99. 1
3.4
4.3
100. In the group $\left(Z_{4},+_{4}\right)$, order of [0] is
1.1
101. ∞
102. can't be determined
103. 0
104. In the group $\left(Z_{4},+_{4}\right)$, order of [3] is
1.4
105. 3
106. 2
107. 1
108. In $(S, \circ), x \circ y=x, \quad x, y \in S$ then ' \circ ' is
109. only associative
110. only commutative
111. associative and commutative
112. neither associative nor commútative
113. In $(N, *), x^{*} y=\max \{x, y\}, x, y \in N$, then $(N, *)$ is
114. only closed
115. only semi group
116. only monoid
117. a group
118. The set of positive even integers, with usual multiplication forms
119. a finite group
120. only a semi group
121. only a monoid
122. an infinite group
123. The set of positive even integers, with usual addition forms
124. a finite group
125. only a semi group
126. onlý a monoid
127. an infinite group

128. In the group ($\mathrm{G},.), \mathrm{G}=\{1,-1, \mathrm{i},-\mathrm{i}\}$ the order of 1 is
129. 2
130. 0
3.4
131. 1
132. In the group (G, .), $G=\{1,-1, i,-i\}$ the order of i is
133. 2
134. 0
3.4
135. 3
136. In the group $(\mathrm{G},),. \mathrm{G}=\left\{1, \omega, \omega^{2}\right\}, \omega$ is cube root of unity, then $\mathrm{O}(\omega)$ is
137. 2
2.1
3.4
4.3
138. In the group $(\mathrm{G},),. \quad \mathrm{G}=\left\{1, \omega, \omega^{2}\right\}, \omega$ is cube root of unity, then $\mathrm{O}(1)$ is
139. 2
140. 1
3.4
4.3
141. In the group $\left(Z_{4},+_{4}\right)$, order of $\mathrm{O}([1])$ is
1.1
142. ∞
143. cannot be determined
144. 4
145. In the group $\left(Z_{4},+_{4}\right), \mathrm{O}([2])$ is
1.1
146. 2
3.cannot be determined
147. 0
148. In the group $\left(Z_{5}-\{[0]\}, \bullet_{5}\right), O([2])$ is
149. 5
2.3
3.4
150. 2
151. In the group $\left(Z_{5}-\{[0]\}, \bullet_{5}\right), O([4])$ is
152. A discrete random variable takes
153. only a finite number of values
154. all possible values between certain given limits
155. infinite number of values
156. a finite or countable number of values
157. A continuous random variable takes
158. only a finite number of values
159. all possible values between certain given limits
160. infinite number of values
161. a finite or countable number of values
162. If X is a discrete random variable then $P(X \geq a)=$

163. $\mathrm{P}(\mathrm{X}<\mathrm{a})$
164. $1-\mathrm{P}(\mathrm{X}>\mathrm{a})$
165. $\mathrm{P}(\mathrm{X}>\mathrm{a})$
166. 1-P(X $\leq \mathrm{a}-1)$
5 If X is a continuous random variable then $P(a<X<b)=$
167. $\mathrm{P}(\mathrm{a} \leq \mathrm{X} \leq \mathrm{b})$
168. $\mathrm{P}(\mathrm{a}<\mathrm{X} \leq \mathrm{b})$
169. $\mathrm{P}(\mathrm{a} \leq \mathrm{X}<\mathrm{b})$
170. all the three above
171. A continuous random variable X has probability density function ' $\mathrm{f}(\mathrm{x})$ ' then
172. $0 \leq f(x) \leq 1$
173. $f(x) \geq 0$
174. $f(x) \leq 1$
175. $0<f(x)<1$
176. A discrete random variable X has probability mass function $p(x)$, then
177. $0 \leq p(x) \leq 1$
178. $p(x) \geq 0$
179. $p(x) \leq 1$
180. $0<p(x)<1$
181. Mean and variance of binomial distribution are
182. np, npq
183. $\mathrm{np}, \sqrt{n p q}$
184. np, np
185. np, npq
186. Which of the following is or are correct regarding normal distribution curve ?
a. symmetrical about the line $\mathrm{X}=\mu$ (mean)
b. Mean $=$ median $=$ mode
c. unimodal
d. Points of inflection are at $\mathrm{X}=\mu \pm \sigma$
187. a, b only
188. b,d only
189. a.b,c only
190. all
191. For a standard normal distribution the mean and variance are
192. μ, σ^{2}
193. μ, σ
194. 0,1
195. 1, 1
196. The probability density function of the standard normal variate Z is $\varphi(z)=$
197. $\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2} z^{2}}$
198. $\frac{1}{\sqrt{2 \pi}} e^{-z^{2}}$
199. $\frac{1}{\sqrt{2 \pi}} e^{\frac{1}{2} z^{2}}$
200. $\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} 2^{2}}$
201. If X is a discrete random variable then which of the following is correct ?
202. $0 \leq F(x)<1$
203. $F(-\infty)=0$ and $F(\infty) \leq 1$
204. $P\left[X=x_{n}\right]=F\left(x_{n}\right)-F\left(x_{n-1}\right)$
205. $\mathrm{F}(\mathrm{x})$ is a constant function
206. If X is a continuous random variable then which of the following is incorrect?
207. $F^{\prime}(x)=f(x)$
208. $F(\infty)=1$ and $F(-\infty)=0$
209. $P[a \leq x \leq b]=F(b)-F(a)$
210. $P[a \leq x<b] \neq F(b)-F(a)$
211. Which of the following are correct?
(i) $E(a X+b)=a E(X)+b$
(ii) $\mu_{2}=\mu_{2}{ }^{\prime}-\left(\mu_{1}^{\prime}\right)^{2}$
(iii) $\mu_{2}=$ var iance
(iv) $\operatorname{var}(\mathrm{aX}+\mathrm{b})=\mathrm{a}^{2} \operatorname{var}(\mathrm{X})$
212. all
213. (ii), (iii)
214. (i), (iv)

215. the points of inflection are at $X=\mu \pm \sigma$
216. maximum height of the curve is $\frac{1}{\sqrt{2 \pi}}$

ADDITIONAL

* In 16 throws of a die getting an even number is considered a success. Then the variance of the successes is
1)4
2)6
3)2
4)256
* The expected value of the number on a die when the die is thrown

1. 7
2. 6
3. $\frac{7}{2}$
4. $\frac{5}{2}$
For a normal distribution with mean $\mu=34$ and variance $\sigma^{2}=16, \mathrm{P}(30<\mathrm{X}<60)=$
Where X is normal variate and Z is the corresponding standard normal variate
5. $\mathrm{P}(-0.25<\mathrm{z}<0.25)$
6. $\mathrm{P}(0<\mathrm{z}<1.625)$
7. $\mathrm{P}(0.25<\mathrm{z}<1.625)$
8. $\mathrm{P}(-0.25<\mathrm{z}<1.625)$
