FULL PORTION TEST

www.jTnpscExamOnlineResultsblogspot.in 3) $\sqrt{2\lambda}$

9. If $\vec{a} = \vec{i} - 2\vec{j} + 3\vec{k}$ and $\vec{b} = 3\vec{i} + \vec{j} + 2\vec{k}$ then a unit vector perpendicular to \vec{a} and \vec{b} is 1) $\frac{\vec{i} + \vec{j} + \vec{k}}{\sqrt{3}}$ 2) $\frac{\vec{i} - \vec{j} + \vec{k}}{\sqrt{3}}$ 3) $\frac{-\vec{i} + \vec{j} + 2\vec{k}}{\sqrt{3}}$ 4) $\frac{\vec{i} - \vec{j} - \vec{k}}{\sqrt{3}}$
$1) \frac{1}{\sqrt{3}} \qquad 2) \frac{1}{\sqrt{3}} \qquad 3) \frac{1}{\sqrt{3}} \qquad 4) \frac{1}{\sqrt{3}} \qquad (1)$
10. The vector equation of a plane whose distance from the origin is p and perpendicular to a unit vector \hat{n} is $1. \vec{r} \cdot \vec{n} = p$ $2. \vec{r} \cdot \hat{n} = q$ $3. \vec{r} \times \vec{n} = p$ $4. \vec{r} \cdot \vec{n} = p$
11. The points z_1 , z_2 , z_3 , z_4 in the complex plane are the vertices of a parallelogram taken in order if and only if
1) $z_1 + z_4 = z_2 + z_3$ 2) $z_1 + z_3 = z_2 + z_4$ 3) $z_1 + z_2 = z_3 + z_4$ 4) $z_1 - z_2 = z_3 + z_4$
12. If $z_n = \cos \frac{n\pi}{3} + i \sin \frac{n\pi}{3}$ then $z_1 z_2 z_3 z_6$ is
1) 1 2) -1 3) i 4) $-i$
13. If $a = \cos \alpha - i \sin \alpha$, $b = \cos \beta - i \sin \beta$, $c = \cos \gamma - i \sin \gamma \Box$ then $(a^2 c^2 - b^2) / abc$ is
1) $\cos 2(\alpha - \beta + \gamma) + i \sin 2(\alpha - \beta + \gamma)$ 3) $-2 i \sin(\alpha - \beta + \gamma)$ 4) $2 \cos(\alpha - \beta + \gamma)$
14. Identify the correct statement
1. Sum of the moduli of two complex numbers is equal to their modulus of the sum 2. Modulus of the product of the complex numbers is equal to the sum of their moduli
3. Arguments of the product of two complex numbers is the product of their arguments.
4. Arguments of the product of two complex numbers is equal to sum of their arguments.
15. The vertex of the parabola $x^2 = 8y - 1$ (1) ($\frac{1}{8}, 0$) (1) ($\frac{1}{8}, 0$) (1) (0, $\frac{1}{8}$) (1) (0, $-\frac{1}{8}$)
16. The length of the semi-major and the length of semi-minor axis of the ellipse $\frac{x^2}{144} + \frac{y^2}{169} = 1$ is 1) 26, 12 2) 13, 24 3) 12, 26 4) 13, 12 17. The sum of the distance of any point on the ellipse $4x^2+9y^2 = 36$ from $(\sqrt{5}, 0)$ and $(-\sqrt{5}, 0)$ is
1) 26, 12 17. TI 2) 13, 24 3) 12, 26 4) 13, 12 (\overline{z} c) $1(\overline{z}$ c) $1(\overline{z})$ c) $1(\overline{z}$ c) $1(\overline{z})$ c) $1(\overline{z}$ c) $1(\overline{z})$ c
17. The sum of the distance of any point on the ellipse $4x^2+9y^2 = 36$ from $(\sqrt{5}, 0)$ and $(-\sqrt{5}, 0)$ is 1) 4 2)8 3)6 4)18
18. The condition that the line $lx + my + n = 0$ may be a normal to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is
1. $al^3 + 2alm^2 + m^2n = 0$ 2. $\frac{a^2}{l^2} + \frac{b^2}{m^2} = \frac{(a^2 + b^2)^2}{n^2}$
3. $\frac{a^2}{l^2} + \frac{b^2}{m^2} = \frac{a^2}{n^2}$ 4. $\frac{a^2}{l^2} - \frac{b^2}{m^2} = \frac{(a^2 + b^2)^2}{n^2}$
19. The angle between the curves $\frac{x^2}{25} + \frac{y^2}{9} = 1$ and $\frac{x^2}{8} - \frac{y^2}{8} = 1$ is
1) $\frac{\pi}{4}$ 2) $\frac{\pi}{3}$ 3) $\frac{\pi}{6}$ 4) $\frac{\pi}{2}$
20. The parametric equation of the curve $x^{2/3} + y^{2/3} = a^{2/3}$ are
$\begin{array}{c} 1 \\ 1 \\ 3 \\ 3 \\ x = a^{3} \sin \Box \\ y = a^{2} \cos \Box \\ \end{array}$ $\begin{array}{c} 2 \\ 2 \\ 3 \\ x = a \cos^{3} \Box \\ y = a \sin^{3} \Box \\ 4 \\ x = a^{3} \cos \Box \\ y = a^{3} \sin \Box \\ \end{array}$
21. The value of 'a' so that the curves $y = 3e^x$ and $y = \frac{a}{3}e^{-x}$ intersect orthogonally is
www.Kanchikalvi.com www.TnpscExamOnlineResult.blogspot.in

www.Kanchikalvi.com

www.TnpscExamOnlineResult.blogspot.in

www.TnpscExamOnlineResult.blogspot.in 49 (i) Evaluate : $\int \sqrt{a^2 - x^2} dx$

(ii) Evaluate
$$\int_{-1}^{1} \sin x \cos^4 x dx$$

50. Form the differential equation by eliminating arbitrary constants given in brackets for

$$y = Ae^{2x}\cos(3x + B), \{A, B\}$$

51. Show that $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$

52. State and prove reversal law on inverses of a group.

53. For the p.d.f
$$f(x) = \begin{cases} cx(1-x)^3, 0 < x < 1 \\ 0, & elsewhere \end{cases}$$

54. The probability of success of an event is p and that of failure is q. Find the expected number of trials to get a first success.

55. (i) Find the equations of the two tangents that can be drawn from the point (5, 2) to the ellipse $2x^2+7y^2 = 14$.

(OR)

(ii) A cylindrical hole 4 mm in diameter and 12mm deep in a metal block is rebored to increase the diameter to 4.12 mm. Estimate the amount of metal removed

N.B. (i) Answer any TEN questions.

(ii) Question No: 70 is compulsory and choose any NINE questions from remaining. (iii) Each questions carries 10 marks.

ection

56. Investigate for what values of λ , μ the simultaneous equations

$$x+y+z = 6$$
, $x+2y+3z = 10$, $x+2y+\lambda z = (\mu)$

57. verify $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = \begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \\ \vec{a} & \vec{b} & \vec{c} \end{bmatrix} \vec{d}$, if $\vec{a} = \vec{i} + \vec{j} + \vec{k}$, $\vec{b} = 2\vec{i} + \vec{k}$, $\vec{c} = 2\vec{i} + \vec{j} + \vec{k}$, $\vec{d} = \vec{i} + \vec{j} + 2\vec{k}$

- 58. Show that the lines $x = \frac{y+1}{-1} = \frac{z}{3}$ and $\frac{x-2}{1} = \frac{y-1}{2} = \frac{-z-1}{1}$ intersect and find their point of intersection
- P represents the variable complex number z. Find the locus of P, if $\operatorname{Im}\left|\frac{2z+1}{iz+1}\right| = -2$ 59.
- 60. Find the axis, vertex, focus, equation of directrix, latus rectum, length of the latus rectum for the parabola $y^2+8x-6y+1=0$ and hence sketch the graph.

61. A cable of a suspension bridge hangs in the form of a parabola when the load is uniformly distributed horizontally. The distance between two towers is 1500 ft, the points of support of the cable on the towers are 200ft above the road way and the lowest point on the cable is 70ft above the roadway. Find the vertical distance to the cable (parallel to the roadway) from a pole whose height is 122ft.

62/\show anathikaline 3x412y = 9 touches the hyperbola x2-9y2=9 and ts/boin to scontate. Online Result. blogspot. in

www.Kanchikalvi.com

Find (i) the constant

$$[10x10=100]$$

- 63? Two sides of an fahigie flave the graph in and 15m. The angle between the missing alva fate of 2°/min. How fast is the length of third side increasing when the angle between the sides of fixed length is 60°?
- 64. Find the local maximum and minimum values of 't+cost'.
- 65. Using Euler's theorem, prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \frac{1}{2}\tan u$, if $u = \sin^{-1}\left(\frac{x-y}{\sqrt{x}+\sqrt{y}}\right)$.
- 66. Show that the surface area of the solid obtained by revolving the arc of the curve
 - y = sinx from x = 0 to x = π about x-axis is $2\pi \left[\sqrt{2} + \log(1 + \sqrt{2})\right]$.
- 67. Solve the differential equation dy = x3 dy + 3x2ydx + secx(secx+tanx)dx
- 68. Show that the set of four functions f_1 , f_2 , f_3 , f_4 on the set of non-zero complex numbers

(OR)

C- { 0 } defined by $f_1(z) = z$, $f_2(z) = -z$, $f_3(z) = \frac{1}{z}$, $f_4(z) = -\frac{1}{z}$, $\forall z \in (-\{0\})$ forms an abelian

group with respect to the composition of functions.

69. The probability density function of a random variable *x* is

$$f(x) = \begin{cases} kx^{\alpha - 1}e^{-\beta x^{\alpha}}, & x, \alpha, \beta > 0\\ 0, & elsewhere \end{cases}$$

Find (i) k (ii) P(X>10)

70. a) Find the area of the curve $y^2 = (x-5)^2(x-6)$

(i) the area between x = 5 and x = 6 (ii) between x = 6 and x = 7

Solve
$$\left(1+e^{\frac{x}{y}}\right)dx+e^{\frac{x}{y}}\left(1-\frac{x}{y}\right)dy \neq 0$$
 given that y=1, where x=0.