## FULL PORTION TEST

DATE:
TIME: 3 hrs
CLASS: XII
$\underline{\text { SECTION - A }}$

## N.B. i) Answer all the questions. <br> ii) Each questions carries one mark.

1. If A is a scalar matrix with scalar $\mathrm{k} \neq 0$, of order 3 , then $\mathrm{A}^{-1}$ is
1) $\frac{1}{k^{2}} I$
2) $\frac{1}{k^{3}} I$
3) $\frac{1}{k} I$
2. If the matrix $\left[\begin{array}{rrr}-1 & 3 & 2 \\ 1 & k & -3 \\ 1 & 4 & 5\end{array}\right]$ has an inverse then the vares-ot $k$
1) $k$ is any real number
2) $k=-4$
3) $k \neq-4$
3. If $\left[\begin{array}{ll}2 & 1 \\ 3 & 4\end{array}\right]$,then $(\operatorname{adj} A) A=$
1) $\left[\begin{array}{cc}\frac{1}{5} & 0 \\ 0 & \frac{1}{5}\end{array}\right]$
2) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
3) $\left[\begin{array}{ll}5 & 0 \\ 0 & 5\end{array}\right]$
4. In the system of 3 linear equations withee unknowns, if $\Delta=0, \Delta_{x}=0, \Delta_{y}=0, \Delta_{z}=0$ and atleast one $2 \times 2$ minor of $\Delta \neq 0$ 个hen thersystem is
1) consistent
2) inconsisten
3) consistent and the sysfem reduces to two equations
4) consistent and the system reduces to a single equation.
5. If $\vec{a}$ is a non-zero vector and $m$ is a non-zero scalar then $\mathrm{m} \vec{a}$ is a unit vector if
1) $m=\# 1$
2) $\mathrm{a}=\frac{1}{|m|}$
3) $a=1$
6. If $\vec{a}$ and aredwo unit vectors and $\theta$ is the angle between them, then $(\vec{a}+\vec{b})$ is a unit
vector if $\theta=\frac{\pi}{3}$
2) $\theta=\frac{\pi}{4}$
3) $\theta=\frac{\pi}{2}$
4) $\theta=\frac{2 \pi}{3}$

Thearea of the parallelogram having a diagonal $3 \vec{i}+\vec{j}-\vec{k}$ and a side $\vec{i}-3 \vec{j}+4 \vec{k}$ is
7.

1) $10 \sqrt{3}$
2) $6 \sqrt{30}$
3) $\frac{3}{2} \sqrt{30}$
4) $3 \sqrt{30}$
$8_{\text {www.Kanchikalvi.com }}^{\text {If }} \vec{p}, \vec{p}$ are vectors of magnitude $\lambda$ then the magnitude of $|\vec{p}-\vec{q}|$ is
$8_{\text {www.Kanchikalvi.com }}$ WWW.TnpscExamOnline
9. If $\vec{a}=\vec{i}-2 \vec{j}+3 \vec{k}$ and $\vec{b}=3 \vec{i}+\vec{j}+2 \vec{k}$ then a unit vector perpendicular to $\vec{a}$ and $\vec{b}$ is
1) $\frac{\vec{i}+\vec{j}+\vec{k}}{\sqrt{3}}$
2) $\frac{\vec{i}-\vec{j}+\vec{k}}{\sqrt{3}}$
3) $\frac{-\vec{i}+\vec{j}+2 \vec{k}}{\sqrt{3}}$
4) $\frac{\vec{i}-\vec{j}-\vec{k}}{\sqrt{3}}$
10. The vector equation of a plane whose distance from the origin is $p$ and perpendicular to a unit vector
$\hat{n}$ is
11. $\vec{r} \cdot \vec{n}=p$
12. $\vec{r} \cdot \hat{n}=q$
13. $\vec{r} \times \vec{n}=p$
14. $\vec{n}=2 \geqslant$
15. The points $z_{1}, z_{2}, z_{3}, z_{4}$ in the complex plane are the vertices of a parallelogram taken in order if and only if
1) $z_{1}+z_{4}=z_{2}+z_{3}$
2) $z_{1}+z_{3}=z_{2}+z_{4}$
3) $z_{1}+z_{2}=z_{3}+z_{4}$
4) $z_{1}-z_{2}=$

12. If $z_{n}=\cos \frac{n \pi}{3}+\mathrm{i} \sin \frac{n \pi}{3}$ then $z_{1} z_{2} z_{3} \ldots z_{6}$ is
1) 1
2) -1
3) i
13. If $\mathrm{a}=\cos \alpha-\mathrm{i} \sin \alpha, \mathrm{b}=\cos \beta-\mathrm{i} \sin \beta, \mathrm{c}=\cos \gamma-\mathrm{i} \sin \gamma \square$
1) $\cos 2(\alpha-\beta+\gamma)+i \sin 2(\alpha-\beta+\gamma)$
2) $-2 \cos$
3) $-2 \mathrm{i} \sin (\alpha-\beta+\gamma)$
14. Identify the correct statement
4) $2 \cos s<d$
5) 2 cos co
1. Sum of the moduli of two complex numbersis equal to the ir modulus of the sum
2. Modulus of the product of the complex numbers is equal to the sum of their moduli
3. Arguments of the product of two complex numbersis the product of their arguments.
4. Arguments of the product of two complex cumbers is equal to sum of their arguments.
5. The vertex of the parabola $x^{2}=8 y-1$
1) $\left(-\frac{1}{8}, 0 y\right) 22\left(\frac{1}{8}, 0\right)$
2) $\left(0, \frac{1}{8}\right)$
3) $\left(0,-\frac{1}{8}\right)$
16. The length of the semi-major and the engtinof semi-minor axis of the ellipse $\frac{x^{2}}{144}+\frac{y^{2}}{169}=1$ is
1) 26,12
2) 13,24
3) 12,26
4) 13,12
17. The sum of the distance of any dointonntine ellipse $4 x^{2}+9 y^{2}=36$ from $(\sqrt{5}, 0)$ and $(-\sqrt{5}, 0)$ is
1) 4
18. The condition that the fine $x+m y+n=0$
3)6
may be a normal to the ellis
19. $\frac{a^{2}}{l^{2}}+\frac{b^{2}}{m^{2}}=\frac{\left(a^{2}+b^{2}\right)^{2}}{n^{2}}$
20. $\frac{a^{2}}{l^{2}}-\frac{b^{2}}{m^{2}}=\frac{\left(a^{2}+b^{2}\right)^{2}}{n^{2}}$
21. The angle between the curves $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$ and $\frac{x^{2}}{8}-\frac{y^{2}}{8}=1$ is
1) 
2) $\frac{\pi}{6}$
3) $\frac{\pi}{2}$
1. $a l^{3}+2 a l m^{2}+6 a^{n} n=0$
2. $\frac{a^{2}}{l^{2}}+\frac{b^{2}}{n}=\frac{\left(\left(a^{2}-b\right)^{2}\right)^{2}}{n^{2}}$
3. The parametric equation of the curve $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$ are
1) $x \Rightarrow a \sin ^{3}$
, $\mathrm{y}=\mathrm{a} \cos ^{3}$
2) $x=a \cos ^{3} \square, y=a \sin ^{3}$
3) $x=a^{3} \sin$
,$y=a^{3} \cos$
4) $x=a^{3} \cos$
,$y=a^{3} \sin$
21. The value of ' a ' so that the curves $\mathrm{y}=3 \mathrm{e}^{\mathrm{x}}$ and $\mathrm{y}=\frac{a}{3} e^{-x}$ intersect orthogonally is
www.TnpscExamOnlineResult.blogspot.in
1) -1
2) 1
3) $\frac{1}{3}$
4) 3
22. A continuous graph $y=f(x)$ is such that $f^{\prime}(x) \rightarrow \infty$ as $x \rightarrow x_{1}$ at $\left(x_{1}, y_{1}\right)$. Then $y=f(x)$ has a
23. vertical tangent $\mathrm{y}=x_{1}$
24. horizontal tangent $\mathrm{x}=x_{1}$
25. vertical tangent $\mathrm{x}=x_{1}$
26. horizontal tangent $\mathrm{y}=y_{1}$
27. An asymptote to the curve $y^{2}(a+2 x)=x^{2}(3 a-x)$ is
1) $x=3 a$
2) $\mathrm{x}=-\frac{a}{2}$
3) $\mathrm{x}=\frac{a}{2}$
4) $x=0$
24. The curve $y^{2}(2+x)=x^{2}(6-x)$ exists for
25. $-2<x \leq 6$
26. $-2 \leq x \leq 6$
27. $-2<x<6$
28. $-2 \leq x<6$
29. The area of the region bounded by the graph of $y=\sin x$ and $y=\cos x$ between $x=0$ and
$x=\frac{\pi}{4}$ is
1) $\sqrt{2}+1$
2) $\sqrt{2}-1$
3) $2 \sqrt{2}-2$
$4)^{2} \sqrt{2}+2$
26. The volume generated when the region bounded by $y=x, y=1, x=20$ is rotated about $y$-axis is
1) $\frac{\pi}{4}$
2) $\frac{\pi}{2}$
3) $\frac{\pi}{3}$

27. The curved surface area of a sphere of radius 5, intercepted detweentyo parallel planes of distance

2 and 4 from the centre is

1) $20 \pi$
2) $40 \pi$
28. $\int_{0}^{a} f(x) d x+\int_{0}^{a} f(2 a-x) d x=$
29. $\int_{0}^{a} f(x) d x$
30. $2 \int_{0}^{a} f(x) d x$
3) $10 \pi$

29. The degree of the differential equation $\left(\frac{\left.\left(\frac{d y}{d x}\right)\right)^{1+3}}{}=\frac{d^{2} y}{d x^{2}}\right.$ is
1) 1
2) 2
3) 3
4) 6

4. $\int_{0}^{2 a} f(a-x) d x$
5. The amount present in a radioactive element disintegrates at a rate proportional to its amount. The differential equation correspondingto khe above statement is ( k is negative)
1) $\frac{d p}{d t}=\frac{k}{p}$
2) $\frac{d p}{d t}=k p$
3) $\frac{d p}{d t}=-k t$
31. If $f^{\square}(\mathrm{x})=\sqrt{x}$ and $f(1)=$ then $f(\mathrm{x})$ is
1) $-\frac{2}{3}(x \sqrt{x}+2)$
2) $\frac{3}{2}(x \sqrt{x}+2)$
32. Identify the incorrectstatement.
33. The order of a differential equation is the order of the highest order derivative occurring in it.
34. The degtee of the differential equation is the degree of the highest order derivative which occurs in in (The derivatives are free from radicals and fractions).
35. $\frac{d y}{d x}=\frac{f_{1}(x, y)}{f_{2}(x, y)}$ is the first order and first degree homogeneous differential equation.
$\frac{d y}{\alpha_{x}+} x y=e^{x}$ is a linear differential equation in $x$.
36. In the set of real numbers R , an operation $*$ is defined by $\mathrm{a} * \mathrm{~b}=\sqrt{a^{2}+b^{2}}$

Then the value of $(3 * 4) * 5$ is
1)5
2) $5 \sqrt{2}$
3) 25
4)50

35. In the set of integers under the operation * defined by $a * b=a+b-1$, the identity element is

1) 0
2) 1
3) a
4) b
36. In congruence modulo5, $\{x \in z / x=5 k+2, k \in z\}$ represents
37. [0]
38. [5]
39. [7]
40. [2].
41. Variance of the random variable $X$ is 4 . Its mean is 2 . Then $E\left(X^{2}\right)$ is
1)2
2) 4
3)6
3) 8
38. In 5 throws of a die, getting 1 or 2 is a success. The mean number of successes is
39. $\frac{5}{3}$
40. $\frac{3}{5}$
41. $\frac{5}{9}$
42. $\frac{9}{5}$
43. If the mean and standard deviation of a binomial distribution are 12 and 2 . the value of its parameter $p$ is
44. $\frac{1}{2}$
45. $\frac{1}{3}$
46. $\frac{2}{3}$
47. A discrete random variable X has probability mass function $\mathrm{p}(\mathrm{x})$, the
48. $0 \leq p(x) \leq 1$
49. $p(x) \geq 0$
50. $p(x) \leq 1$

## SECTION - B

N.B: i) Answer any TEN questions.
ii) Question 55 is compulsory and choose any NNE questions from the remaining
(iii) Each questions carries 6 marks.
41. Find the rank of the matrix

$$
\left[\begin{array}{rrrr}
3 & 1 & -5 & -1 \\
1 & -2 & 1 & -5 \\
1 & 5 & -7 & 2
\end{array}\right]
$$


42. Solve the following non-homogeneous system of limear equations by determinant method

$$
4 x+5 y=9,8 x+10 y=18
$$

43. Show that $[\vec{a}+\vec{b}+\vec{c} \vec{b}+\vec{q} \vec{c}]=\vec{d} \vec{b}$
44. (i) Find the direction cosings of the fine joining $(2,-3,1)$ and $(3,1,-2)$.
(ii) Find the angle betweent following planes $2 x-3 y+4 z=1$ and $-x+y=4$.
45.(i) Express the following \&ormplex numbers in polar form $-1-\mathrm{i}$.
(ii) Find all the values of the fallowing: $i^{\frac{1}{3}}$
46.Prove that $(1+i)^{4}$ and $(1+i)^{4 n+2}$ are real and purely imaginary respectively.
45. Determige formhich values of $x$, the function $f(x)=2 x^{3}-15 x^{2}+36 x+1$ is increasing and for which it is decreasirg. Anse determine the points where the tangents to the graph of the function are parallel to the x -axis. 48. $1=g^{a x+b y}$ and z is a homogeneous function of degree $n$ in $x$ and $y$ prove that

$$
x \frac{\partial V}{\partial x}+y \frac{\partial V}{\partial y}=(a x+b y+n) V
$$

49 (i) Evaluate: $\int_{0} \sqrt{a^{2}-x^{2} d x}$
(ii) Evaluate $\int_{-1}^{1} \sin x \cos ^{4} x d x$
50. Form the differential equation by eliminating arbitrary constants given in brackets for

$$
y=A e^{2 x} \cos (3 x+B),\{\mathrm{A}, \mathrm{~B}\}
$$

51. Show that $\mathrm{p} \leftrightarrow \mathrm{q} \equiv(\mathrm{p} \rightarrow \mathrm{q}) \wedge(\mathrm{q} \rightarrow \mathrm{p})$
52. State and prove reversal law on inverses of a group.
53. For the p.d.f $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{l}c x(1-x)^{3}, \mathrm{O}<x<1 \\ 0, \text { elsewhere }\end{array}\right.$

Find (i) the constant (ii) $A\left(x<\frac{1}{2}\right)$
54. The probability of success of an event is $p$ and that of failure is $q$. Find the expected number of trials to get a first success.

55. (i) Find the equations of the two tangents that can be drainer the point $(5,2)$ to the ellipse $2 x^{2}+7 y^{2}=14$.
(OR)

(ii) A cylindrical hole 4 mm in diameter and 12 mm deep in a 1 ital block is rebored to increase the diameter to 4.12 mm . Estimate the amount of metal remex.

## N.B. (i) Answer any TEN questions.


(ii) Question No: 70 is compulsory and choose any NINE questions from remaining. (iii) Each questions carries 10 marks.
[10x10=100]
56. Investigate for what values of $\lambda, \mu$ thesimultan宅ous equations

$$
x+y+z=6,
$$

57. verify $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=$

58. verify $(\overrightarrow{a \times b}) \times(\overrightarrow{c \times a})=\left[\begin{array}{llll}a & \vec{b} & \vec{d}] \overrightarrow{c-[a l} & \vec{a} \\ \vec{b} & c\end{array}\right]$
59. Show that the lines $\frac{x-1}{1}=\frac{y+1}{-1}=\frac{z}{3}$ and $\frac{x-2}{1}=\frac{y-1}{2}=\frac{-z-1}{1}$ intersect and find their point of intersections
60. Prepresentsthe variable complex number $z$. Find the locus of P , if $\operatorname{Im}\left[\frac{2 z+1}{i z+1}\right]=-2$
61. Find the axis vertex, focus, equation of directrix, latus rectum, length of the latus rectum for the parabola $y^{2}+8 x-6 y+1=0$ and hence sketch the graph.
62. A Cable of a suspension bridge hangs in the form of a parabola when the load is uniformly distributed horizontally. The distance between two towers is 1500 ft , the points of support of the cable on the towers are 200 ft above the road way and the lowest point on the cable is 70 ft above the roadway. Find the vertical distance to the cable (parallel to the roadway) from a pole whose height is 122 ft .

62vstrak
 of $2^{\circ} / \mathrm{min}$. How fast is the length of third side increasing when the angle between the sides of fixed length is $60^{\circ}$ ?
64. Find the local maximum and minimum values of ' $t+\operatorname{cost}^{\prime}$ '.
65. Using Euler's theorem, prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\frac{1}{2} \tan u$, if $u=\sin ^{-1}\left(\frac{x-y}{\sqrt{x}+\sqrt{y}}\right)$.
66. Show that the surface area of the solid obtained by revolving the arc of the curve $y=\sin x$ from $x=0$ to $x=\pi$ about $x$-axis is $2 \pi[\sqrt{2}+\log (1+\sqrt{2})]$.
67. Solve the differential equation $d y=x 3 d y+3 x 2 y d x+\sec x(\sec x+\tan x) d x$

68. Show that the set of four functions $f_{1}, f_{2}, f_{3}, f_{4}$ on the set of non-zerformplex numbers C- $\{0\}$ defined by $f_{1}(z)=z, f_{2}(z)=-z, f_{3}(z)=\frac{1}{z}, f_{4}(z)=-\frac{1}{z},\langle z \in 0,\{0\}$ forms an abelian group with respect to the composition of functions.
69. The probability density function of a random variable $x$ is

$$
f(x)= \begin{cases}k x^{\alpha-1} e^{-\beta x^{\alpha}}, & x, \alpha, \beta>0 \\ 0 & \text { elsewhere }\end{cases}
$$

Find (i) $k$ (ii) $P(X>10)$
70. a) Find the area of the curve $y^{2}=(x-5)^{2}(x-6)$
(i) the area between $\mathrm{x}=5$ and $\mathrm{x}=6$ (ii) between $\mathrm{x}=6$ and $\mathrm{x}=7$


