PRE-BOARD EXAMINATION

STD : XII
SUB : PHYSICS

I.Choose the correct answer:

MARKS : 150
TIME : 3.00 Hrs
$30 \times 1=30$
1.Which of the following quantities not a scalar?
a)electric flux
b) electric potential
c) electric field
d) none of these

2. A dipole is placed in a non uniform electric field with its axis paralliel to the field. It experiences
a) only a net force
b) only a torque
c) both a net force and torque
d) neither a netfforcernor a torque
3. If a point lies at a distance x from the midpoint of the dingole, the electric potential at this point is inversely proportionte--
a) $1 / x^{2}$
b) $1 / x^{3}$
c) $1 / x^{4}$
d) x^{2}
4. Two point charges +4 q and +q are placed 30 (n) At what point on the line joining them the electric fieldis zfro?
a) 15 cm from the charge q
b) -78 cm from the charge q
c) 10 cm from the charge q

- 45 cm from the charge q

5. The current flowing in a conductor ispropeytional to
a) drift velocity
b) area of cross section
c) no of electrons
(y) all of these
6. Of the following devices, which has high resistance?
a) moving coil galvanometer
b. ammeter of range $0-1 \mathrm{~A}$
c) ammeter of range 0-10
d. voltmeter
7. In Joule's Calorimeter ©perinent, when a current of 1 ampere is passed through a coil for aknown (hterval of time't', the temperature of water increases from 309 C to $34^{\circ} \mathrm{C}$. When a current of 2 A is passed through the same coil placed in the same quality of water and for the same time, the temperature of water increases form $30^{\circ} \mathrm{C}$ to :
a) 33°
b) $46^{\circ} \mathrm{C}$
c) $39^{\circ} \mathrm{C}$
d) $42^{\circ} \mathrm{C}$
8. The unit hetrychan also be written as
a) VsA^{-1}
(b) yb A
c) $\Omega \mathrm{s}^{-1}$
d) all
9.An emfof $12 D$ is induced when the current in the coil changes at the rate of 0.4 A The coefficient of self induction of the coil is \qquad
a) 0.3
b) 0.003 H
c) 30 H
d) 4.8 H
$10 . \mathrm{DC}$ of 50 A produces the same heating effect as an AC of a) 504 rms current b) 5 A peak current c) 5 A rms current d) none of these
11.In an AC circuit the applied emf $\mathrm{e}=\mathrm{E}_{o} \sin (\omega t+\pi / 4)$ leads the current $\mathrm{i}=\mathrm{I}_{\mathrm{o}} \sin (\omega \mathrm{t}-\pi / 4)$ by
a) $\pi / 2$
b) $\pi / 4$
c) π
d) 0
9. Electromagnetic induction is used in \qquad
a) transformer
b) room heater
c) AC generator
d) both(
10. If the wavelength of the light is doubled, then the amount of scattering is
a) increased by 16 times
b) decreased by 16 times
c) increased by 256 times
d) decreased by 250 times
14.A ray of light passes from a denser medium into a rarer medium. For an angle on incidence of 45°, the refracted ray grazesthessirfage of separation of the two media. The refractive index of the denser medium is
a) $\frac{3}{2}$
b) $\frac{1}{\sqrt{2}}$
c) $\sqrt{2}$

d) 2
15.If the velocity of light in a medium is $2 \times 100 \mathrm{~ms}^{-1}$, + hen the refractive index of the medium will be
a) 1.5
b) 0.5
c) 1.33

11. In hydrogen atom, which of thefollonxingtransition produce spectral line of maximum wavelength
a) $2 \rightarrow 1$ b) $4 \rightarrow 1$
c) $6 \rightarrow 5$
($17 \rightarrow 5$
17.A narrow electron beam passesundedicated through an electric field $\mathrm{E}=$ $3 \times 10^{4} \mathrm{~V} / \mathrm{m}$ and an overlap pin magnetic field $\mathrm{B}=5 \times 10^{2} \mathrm{~Wb} / \mathrm{m}^{2}$. The electron motion, electric field and magnetic field are mutually perpendicular. The speer the electron is
a) $60 \mathrm{~ms}^{-1}$
b) 10.3
$10^{7} \mathrm{~ms}-$
c) $1.5 \times 10^{7} \mathrm{~ms}^{-1}$
d) $0.67 \times 10^{-7} \mathrm{~ms}^{-1}$
12. The energy of the electron in the first orbit of hydrogen atom is -13.6 eV . Its potential energy is
a) -13.6 eV
b) 13.6 KV
c) -27.2 eV
d) 27.2 eV
13. The unit offgeeffigent of viscosity
a) $\mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}$
b) $\mathrm{Nm}^{2} \mathrm{C}^{-2}$
c) $\mathrm{H} \mathrm{m}^{-1}$
d) Nsm^{-2}
20.If 1% of is converted into energy, then amount of mass required to produce anergy of $18 \times 10^{10} \mathrm{~J}$ is
a) $2 \times 104 \mathrm{kkg}$
b) $1 \times 10^{-4} \mathrm{~kg}$ c) $2 \times 10^{-4} \mathrm{~kg} \mathrm{d)} 1 \times 10^{-6} \mathrm{~kg}$
14. If omelday is space ship corresponds to 2 days on earth, the speed of space ship is
$\begin{array}{ll}\text { a) } 4 & 4 \times 10^{8} \mathrm{~ms}^{-1} \\ \text { b) } 2.598 \times 10^{8} \mathrm{~ms}^{-1}\end{array}$
$\sim+1.0 \times 10^{8} \mathrm{~ms}^{-1}$
d) $0.5 \times 10^{8} \mathrm{~ms}^{-1}$
15. The nuclear diameter of ${ }_{4} \mathrm{Be}^{8}$ nucleus is
a) $1.3 \times 10^{-15} \mathrm{~m}$
b) $2.6 \times 10^{-15} \mathrm{~m}$
c) $1.3 \times 10^{-13} \mathrm{~m}$ d) $5.2 \times 10^{-15} \mathrm{~m}$
16. The half life period of N_{13} is 10.1 min . Its mean life time is
a) 5.05 min .
b) 20.2 min
c) $10.1 / 0.6931 \mathrm{~min}$.
d) infinity
17. The binding energy of ${ }_{26} \mathrm{Fe}^{56}$ nucleus is
a) 8.8 MeV
b) 88 MeV
c) 493 MeV
18. The ionization power is minimum for
a) neutrons
b) α-particles
c) gamma rays
od) β-particles
19. In the reverse bias characteristic curve, a diode appears as
a) a high resistance
b) a capacitor c) an OFF switch
d) 0 /switch
20. In a Colpitt's oscillator circuit---
a) capacitive feedback is used
c) capacitor is used
d) all of these
b) tuned LC circuit seed
21. The potential barrier of germanium PN junction (in)

a) 1.1 eV
 b) 0.3 V c) 0.7 V
 d) 1.1 V

29. Printed documents to be transmitted by tore converted into electrical signals by the process of
a) reflection b) scanning c) modulation dight variation.
30. An FM signal has a resting frequency o 105 MHz and highest frequency of 105.015 MHz , who modulated by a signal. Then the carrier swing is
a) 0.03 MHz b
b) 0.06 MH
(.08 kHz d$) 60 \mathrm{MHz}$

II. Answer any FIFTEEN of the following questions in short:15x3=45

31. Write a note on micryvareyoven.
32. Define 'electricfilux'. Whet is its unit?
33. State Ohm's aw. \qquad
34. From the following network find the effective resistance between A and B.

35 this copper wire not suitable for a potentiometer?
36. A long straight wire carrying current produces a magnetic induction of 4. $10^{-6} \mathrm{~T}$ at a point 15 cm from the wire. Calculate the current through the wire.
37. Define unit of self - inductance.
38. What is resonant frequency in LCR circuit?
39. Distinguish between Fresnel and Fraunhofer diffraction.
40. A plano - convex lens of radius 3 m is placed on an optically fla plate and is illuminated by a monochromatic light. Calculate the wavelength of light if the radius of the $8^{\text {th }}$ dark ring is 3.6 mm.
41. What are the characteristics of laser?
42. Calculate the longest wavelength that can be analysgd by a rock salt crystal of spacing $\mathrm{d}=2.82 \AA$ in thefirst order.
43. Write the applications of photo electric cells (any thre).
44. Tritium has a half-life of 12.5 years. What fraction 0 f + the sample will be left over after 50 years?
45. What do you mean by artificial radioactivity
46. What is Zener break down?
47. What are the advantages of negativeffee back
48. For a transistor to work, how is theboas provided?
49. When there is no feedback the gain of the amplifier is 100 . if 5% of the output voltage is feedback intothe 定put tyrough a negative feedback network, find out the voltage gain after feedback.
50. Define directivity.

III. Answer the Question No. 54 compulsorily.Answer any six questions of the remaining 11 question \curvearrowleft

51. The plates of a parallel pfate capeacitor have an area of $90 \mathrm{~cm}^{2}$ each and are separate 2.5 mm . The capacitor is charged by connecting it into a 400 supply. How much electrostatic energy is stored by the capacitor.
52. Obtain the condition for bridge balance in Wheatstone's bridge.
53. Explain the method tompare the emfs of two cells using potentiomefer.
54. A straigh \& waite of length 1 m and resistance 2 ohm is connected across a battery of emf 12 volt. The wire is placed normal to the magreftic field of induction $5 \times 10^{-3} \mathrm{~T}$. Find the force on the wire.

(OR)

Amorving coil galvanometer of resistance 20Ω produces full cale deflection for a current of 50 mA . How will you convert it intto (i) an ammeter of range 20 A and (ii) A voltmeter of range 120 V ?
55. Explain the various energy losses in a transformer.
56. Derive the expression for the radius of the $\mathrm{n}^{\text {th }}$ dark ring.
57. What are the shortcomings of Bohr's theory.
58. What is photoelectric effect? With the help of a graph explain the effect of intensity of incident radiation on the photoelectric current.
59. Establish Einstein's mass-energy equivalence, $\mathrm{E}=\mathrm{mc}^{2}$.
60. Calculate the binding energy and binding energy pegnucleonot ${ }_{20} \mathrm{Ca}^{40}$ nucleus. Given, mass of 1 proton $=1.007825$ ampenase of 1 neutron $=1.008665 \mathrm{amu}$; mass of $20 \mathrm{Ca}^{40}$ nucleus 39.96259 amu .
61. Explain the half wave rectification.
62. Draw the functional block diagram of AM radie transmitter
IV. (i) Answer any four questions in detail. (ii) (D) Whiagrams wherever necessary:
$4 \times 10=40$
63.Derive an expression for electric fiefo are tole lectric dipole at a point along the equational line.
64.Explain in detail the principle, qenstraction and the theory of moving coil galvanometer.
65. A source of alternating emf is cenectea to a series combination of a resistor R , an inductor L and a capacity C . Obtain with the help of a vector diagram i) the effective wortage ii) the impedence iii) the phase relationship between the current and the voltage.
66.Derive an expression fonduidth of interference fringes in Young's double slit experiment.
67.State and obtaij Beagg's saw. Explain how Bragg's spectrometer can be used to determine thewavelength of x - rays.
68.Obtain an expressiod to deduce the amount of the radioactive substance present at any droment. Obtain the relation between half life period and decay constant
69. Explahe with neat circuit diagram, the working of single stage CE amplific Draw the frequency response curve of a CE amplifier. Discuss the respuths
20. With the help of a functional block diagram, explain the operation of a super heterodyne AM receiver.

