	ARUTHRAA VIDYALAYA MATRICULATION HIGHER SECO PERAMBALUR -621 220. SUB TEST VII - (2015-2016)	NDARY SCHOOL,
EDUCATION DECIDES DESTINY	CLASS : X (A & B)	MARKS: 100
	SUBJECT : MATHEMATICS	TIME :230hrs
Note: (i)	<u>SECTION-I</u> Answer ALL the 15 questions.	15-31=15
(ii) Choose the correct answer from the given four alternatives and		
	Write the option code and the corresponding answer.	
	, 11), (5, <i>a</i>) } represents a constant function, then the value of ' <i>a</i> ' is _ (a) 7 (b) 11 (c) 5 (c) 5	0
2. The co	be ommon ratio of the G.P. a^{m-n} , a^m , a^{m+n} is	\mathcal{I}
(a) <i>a</i> ⁿ		V
	term of the sequence 1, 1, 2, 3, 5, 8, Is	
(a) 25	\sim	
4. The ref (a) 28	mainder when $x^2 - 2x + 7$ is divided by $x + 4$ is 8 (b) 29 (c) 30 / (df) 31	
	system 6x-2y = 3, kx-y = 2 has a unique solution, then	
(a) k	=3 (b) $k \neq 3$ (c) $k = 4$ (d) $k \neq 4$	
6. If (5	$ \begin{array}{c} x & 1 \end{array} \right) \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} = \begin{pmatrix} 20 \\ -1 \end{pmatrix}, \text{ then the value of } x \text{ if } \\ \end{array} $	
(a) 7	(b) -7 (c) $\frac{1}{7}$ (d) 0	
-	int of intersection of the straight lines $y \neq 0$ and $x = -4$ is	
	(a) (a, 0) $(b) (-4, 0)$ $(c) (1, 4)$ $(d) (4, 0)$	
	agle of inclination of a straight line parallel to x -axis is equal to	
(a) 0°		
AD =	<i>C</i> is a right angled triangle where $B = 90^\circ$ and $BD \perp AC$. If $BD = 8$ = 4 cm, then <i>CD</i> is	cm,
(a) 24		
-	erimeter of two similar tripoles $\triangle ABC$ and $\triangle DEF$ are 36 cm and	24 cm
Resp (a) 12	pectively . If $DE = 10$ cm, then AB is 2 cm (b) 20 cm (c) 15 cm (d) 18 cm	
	$x - \sin^4 x_a = 0$	
	$2 \sin^2 x$ (b) $2 \cos^2 x - 1$ (c) $1 + 2\sin^2 x$ (d) $1 - 2\cos^2 x$	x
	$e^2 \theta - 9 \sec^2 \theta = \frac{1}{100}$	
(a)		mactivaly than
	diameter and height of a right circular cone are 12 cm and 8 cm respectively. The second s	spectively, then
	t 0 cm (b) 20 cm (c) 30 cm (d) 96 cm	
/	and standard deviation of a data are 48 and 12 respectively. The c	oefficient of
(a)	$\frac{1}{42} \qquad (b) 25 \qquad (c) 28 \qquad (d) 48$	
	$= 0.25, P(B) = 0.50, P(A \cap B) = 0.14$ then $P(\text{neither } A \text{ nor } B) = $	
(a) (0.39 (b) 0.25 (c) 0.11 (d) 0.24	

SECTION - II

www.TnpscExamOnlineResult.blogspot.in

44. Three coins are tossed simultaneously. Using addition theorem on probability, Find the Probability that either exactly two tails or at least one head turn up. 45. (a) Find the sum of first n terms of the series. $7 + 77 + 777 + \dots$ (Or) (b) Using clay . a student made a right circular cone of height 48cm and base radius (12) Another student reshapes it in the form of a sphere . Find the radius of the sphere SECTION -IV Note : Answer BOTH the questions choosing either of the alternatives. 2X10=20 46. (a). Draw a circle of radius 3 cm. From an external point 7 cm away from its centre, construct the pair of tangents to the circle and measure their lengths. (or)(b). Construct a cyclic quadrilateral ABCD where AB = 7 cm, m/A 80° , AD = 4.5 cm and BC = 5 cm. 47. (a). Draw the graph of $y = 2x^2$ and hence solve $2x^2 + x - 6 = 0$ (or) (b). The cost of the milk per liter is 15. Draw the graph or the relation between the quantity and cost . Hence find (ii) the cost of 3 liters of milk (i)The proportionality constant.